Social Studies Curriculum

Machu Picchu: Unveiling the Mystery of the Incas
January 26 to May 4, 2003

Revised

By Carol P. Merriman
Curriculum Specialist

Technical Supervisors
Richard L. Burger, Ph.D.
Exhibition Co-curator

Lucy C. Salazar
Exhibition Co-curator

Department of Public Education
Peabody Museum of Natural History
Yale University
New Haven, Connecticut
This social studies curriculum is designed to accompany the exhibition *Machu Picchu: Unveiling the Mystery of the Incas*, on view at the Peabody Museum of Natural History, Yale University, New Haven, Connecticut, from January 26 to May 4, 2003.

Revised March 2003

Written for the Yale Peabody Museum
Department of Public Education
http://www.peabody.yale.edu/education
by Carol P. Merriman, Curriculum Specialist

Technical Supervisors:
Richard L. Burger, Ph.D.
Exhibition Co-curator
Lucy C. Salazar
Exhibition Co-curator

Published by
Peabody Museum of Natural History
Yale University
P.O. Box 208118
New Haven, CT 06520-8118 USA
http://www.peabody.yale.edu/

© 2002 Peabody Museum of Natural History, Yale University. All rights reserved.

This publication may not be reproduced, in whole or in part, for commercial purposes in any printed, electronic or other form without the written permission of the Peabody Museum of Natural History. Limited permission is granted to reproduce portions of this work for educational use in the context of classroom instruction only.

Cover photograph: Yale University
Contents

I. Summary 1
II. Note to Teachers 3
III. Objectives 5
IV. The Inca: From Village to Empire 7
V. Lesson Plans
 1. Introduction 21
 2. Making a Relief Map 22
 3. The Vertical Economy 23
 Handout 1: The Vertical Economy 24
 4. Timeline 25
 5. Comparing Two Empires 26
 Handout 2: Comparing Two Empires 27
 6. Making a Quipu 28
 Handout 3: Making a Quipu 29
 7. The Mita System 30
 Handout 4: From Tribute to Taxes 31
 Teacher Handout for From Tribute to Taxes 33
 8. Inca Children at Work and Play 34
 Handout 5: Working with a Primary Source
 Illustrations by Felipe Gumán Poma de Ayala 36
 9. Why Was Machu Picchu Built? 39
 Handout 6: Can You Solve the Mystery of Machu Picchu? 40
 Teacher Handout: Explanation of
 Handout 6: Can You Solve the Mystery of Machu Picchu? 42
 10. Before You Visit the Museum 43
 11. Visiting the Exhibition 43
 12. Summing Up 44
 Additional Resources 45
VI. Guide to Machu Picchu: Unveiling the Mystery of the Incas/Teacher’s Key 47
VII. Student Guide to Machu Picchu: Unveiling the Mystery of the Incas 55
Appendices
 A. Glossary 65
 B. Word Match 75
 C. Connections to Connecticut Social Studies Standards 83
I. Summary

This curriculum is designed to be used in conjunction with the exhibition *Machu Picchu: Unveiling the Mystery of the Incas,* to be held at the Peabody Museum of Natural History at Yale University in New Haven, Connecticut, from January 26 to May 4, 2003. Teachers can make arrangements for their class to visit the exhibition by calling Janet Sweeting, Head of Public Education, at (203) 432-3775. The teacher and student guides to the exhibition can be picked up at the Museum’s admissions desk.

The curriculum has been developed for social studies teachers in middle school classrooms. It is also suitable for high school world history and Spanish classes. The activities are designed to be used in tandem with the background article included in the curriculum (see Section IV, “The Inca: From Village to Empire”). Teachers are encouraged to choose the activities that are most suitable to their own curriculum and the time they have available.

The curriculum supports the Connecticut Social Studies Curriculum Framework for middle school (see Appendix C). Writing activities are designed to prepare students for the content area portion of the Connecticut Mastery Test (CMT) and the interdisciplinary writing section of the Connecticut Academic Performance Test (CAPT).

A second curriculum for middle school science teachers is under development.
II. Note to Teachers

Curriculum Design
This curriculum is designed to be used in conjunction with the exhibition *Machu Picchu: Unveiling the Mystery of the Incas*. If you cannot attend the exhibition, go to the Peabody Museum’s Machu Picchu website at http://www.yale.edu/machupicchu and take a virtual tour of the exhibition to complement the curriculum.

The curriculum has been developed for social studies students in grades 6 to 9. It can be adapted for use by other grade levels. The curriculum is designed as a two-week unit, including the visit to the exhibition. Each daily lesson is intended to take one class period. All classroom activities are designed to stand alone. If you do not have time to do the entire two-week unit, choose the activities that fit in best with your curriculum and the ability levels of your students.

The curriculum is organized around information contained in the background article “The Inca: From Village to Empire” (see Section IV). The activities, including handouts, depend on information included in each day’s reading assignment. It is therefore imperative that students read the material before doing the day’s activities. The daily lesson plans are organized sequentially and are keyed to build on information contained in each day’s reading. A glossary provides definitions of key words and concepts. Defined words are printed in boldfaced type the first time they appear in the background article; foreign words are italicized. A vocabulary exercise is included after each day’s reading assignment. You may want to quiz students on the vocabulary to encourage them to do each day’s reading ahead of class.

Using the Inquiry Approach
The curriculum uses the inquiry approach. Each day’s activities begin with an overarching inquiry question. Write the question on the board and present it at the beginning of each class period. Ask students to discuss it at the end of the day’s activities.

Modifying the Material to Fit Your Students’ Needs
We encourage you to adapt the curriculum to your students’ age and ability levels. For example, if you feel that the reading assignments are too advanced for your students, consider providing the information in lecture form. You can supply some answers on handouts where prior knowledge is assumed (for example, by giving students information on the Roman Empire if they have not studied it). You may want to consider reducing the number of foreign words included as vocabulary words.

The “Student Guide to *Machu Picchu: Unveiling the Mystery of the Incas*” is designed to focus students’ attention and encourage them to study highlighted exhibition material. Ask them to fill it out during the visit and to complete it at home.
III. Objectives

Knowledge
Students will gain an in-depth knowledge of the geography of South America.
Students will learn about how mountains affect climate, plant and animal ecology and the daily life of humans living in the region.
Students will learn about the history, economy and social life of the Inca Empire.
Students will learn about the impact of the Spanish Conquest on the Andean people.
Students will learn about the archaeological site of Machu Picchu, built by the Inca.

Attitudes
Students will learn that society can be organized effectively in ways very different from our own.
Students will learn about how environment can be manipulated in different ways to support life.
Students will appreciate the accomplishments of native South American cultures before the arrival of Europeans.

Skills
Students will create a topological map to understand the impact of the Andes Mountains on the climate of South America.
Students will practice testing hypotheses to come to a conclusion based on available evidence.
Students will practice developing an analytical essay by examining how the Inca Empire was organized in the absence of writing, money and the wheel.
Students will practice writing across disciplines in preparation for the CMT and CAPT.
IV. The Inca: From Village to Empire

1. Introduction

At about the time Christopher Columbus landed on a tiny island in the Caribbean Sea, Huayna Capac, a powerful emperor and warrior, was battling to expand his empire thousands of miles to the south, in what is now Ecuador and Colombia. He and his father and grandfather had fought to create an empire that at its peak extended over a vast area along the rugged Andes Mountains of South America. Probably the largest nation in the world at that time, the Inca Empire was suddenly conquered by a small band of Spanish soldiers in 1532.

The Inca people originated in the Cuzco Valley of what is modern-day Peru in about AD 1000, and gradually conquered neighboring tribes. The empire expanded rapidly under three Inca emperors between 1438 and 1527 until at its height it stretched from what is now the border between Colombia and Ecuador to central Chile—a distance of over 3,400 miles. At its height, the Inca people, who numbered only about 100,000, ruled from 10 to 12 million people from at least 86 ethnic groups with their own languages, traditions and religious beliefs.

The empire encompassed wildly contrasting geographic regions, ranging from towering snow-capped mountains to coastal deserts to Amazonian jungles. The heart of the empire, centered around Cuzco, was located at such a high elevation that people unaccustomed to high altitudes suffered from altitude sickness, which includes headaches, fatigue, dizziness and upset stomach. The empire was often plagued with a variety of natural disasters, including earthquakes, volcanoes, droughts and devastating floods.

2. Inca Gold

The Spanish conquistadores, or conquerors, came to what they called the New World in search of gold. Francisco Pizarro, who first came to the Americas in 1502, had heard rumors of a land filled with gold to the south of Mexico. He and a small band of Spanish soldiers landed on the shores of what is now Ecuador in 1531. They had arrived in Tahuantinsuyu, the “Land of the Four Quarters,” known to us as the Inca Empire.

When Pizarro and his men arrived in the Inca capital of Cuzco, they saw a splendid city with palaces, halls, and temples made of huge stones carefully fit together without mortar. Most incredible of all were the temples decorated with gold, silver and precious jewels. The most important temple was the Coricancha, or “House of the Sun,” dedicated to the Inca sun god, named Inti. Its walls and doorways were covered with gold, both inside and out. One building within the complex contained a large statue of the sun, made of solid gold and embedded with precious stones. More fantastic still was the garden. A Spanish eyewitness, Pedro de Cieza de León, describes the sight as follows:

They had also a garden, the clods of which were made of pieces of fine gold; and it was artificially sown with golden maize, the stalks, as well as the leaves and cobs, being of that metal… [T]hey had more than twenty golden sheep [llamas] with their lambs, and the shepherds with their slings and crooks to watch them, all made of the same metal.*

Early Spanish observers described the Andean people as well fed, healthy and clean. When the Spanish arrived, the Inca emperor and his assistants supervised a highly organized government that

Map of Tahuantinsuyu, the Inca Empire.
controlled an area of 135,000 square miles. The Spanish must have been surprised to learn that the Inca Empire ran very efficiently without three inventions considered essential by Europeans—writing, money, and the wheel.

How was the Inca Empire able to organize such a vast area and produce enough wealth to provide basic necessities to its people and support a lavish lifestyle for the Inca nobility and priests? The answers lie in the many ways the Incas devised to take advantage of their diverse environment.

3. Extreme Environment

The Andes—the second highest mountain chain in the world—create an environment of extreme climate and weather conditions. Mountain ranges are created when continental plates slide under each other, creating pressure that lifts and squeezes the land above them, like a tablecloth being pushed up by a heavy plate. The mountain range was created over a period of millions of years, as the plate under the Pacific Ocean has been sliding eastward under the South American plate, raising the mountains and creating a deep trench off the coast. This constant grinding causes severe earthquakes. In the mountainous terrain, earthquakes can cause mud slides and avalanches. For example, in May of 1970, a devastating earthquake, followed by avalanches and mud slides, killed 70,000 people in the central Andes. The earthquake loosened a huge block of ice that caused a landslide which buried an entire town, killing 4,000 people. Periodic volcanic eruptions have also claimed the lives of thousands.

The region’s climate is influenced by water and air currents that flow north from Antarctica along the Pacific coast. The ocean current, called the Peru or Humboldt Current, brings extremely cold but nutrient-filled water to the surface, supporting a rich supply of fish, birds and sea mammals. But the cold Peru Current causes clouds to release moisture before they reach land, creating one of the driest deserts in the world along the west coast of South America. The winds, cooled by the Peru Current, then warmed by the coastal plains, do not precipitate enough water to produce significant amounts of rain until they rise high into the Andes, where rain falls seasonally in the mountain valleys of the western slope. On the eastern slopes, on the other hand, equatorial winds blowing from the east over the Amazon River hit the mountains, cool, and produce large amounts of rain. The well-watered eastern slopes of the Andes support lush, tropical vegetation as they drop to the Amazonian basin.

At irregular intervals, a warm ocean current runs south along the Peruvian coast, pushing the Peruvian Current farther west. This current, called El Niño, causes heavy rain in the desert coastal areas and drought in the southern Andes. In 1982, the worst El Niño in 100 years produced heavy flooding in coastal cities, destroying roads and irrigation systems, while drought in the mountains killed thousands of animals.

4. The Vertical Economy

The Andes Mountains stretch from Colombia to Chile, creating three distinct geographic areas—the costa (coast), the sierra (mountains), and the selva (tropical rainforest). (See Handout 1: The Vertical Economy, page 24.) The costa is a narrow strip of land bordered by the Pacific Ocean to the west. One of the driest deserts in the world, it is crossed by many rivers that run down from the mountains and can be harnessed for irrigation. The western slope of the sierra is extremely dry. Between the two mountain slopes lies the altiplano, a dry, high-altitude plain in southern Peru and northern Bolivia. Areas at altitudes above 10,000 feet are called the highlands. The eastern slopes of the Andes, called the ceja de selva (“eyebrow of the rainforest”) enjoy warmer, humid weather. The eastern slopes of the Andes have a montane cloud forest environment, due to a cool, misty climate that supports thick, low vegetation. To the east lies the selva, the beginning of the Amazonian rainforest.
Although the rugged Andes Mountains create extreme weather conditions and make transportation difficult, they have hidden advantages that Andean people learned to exploit. The difference in altitude between the peaks and valley bottoms can be as great as 10,000 feet (almost two miles!), creating wide variations in temperature and rainfall at different altitudes. The varying topography of the mountains creates a variety of ecological niches, which are zones stacked one on top of another where different types of animals and plants can survive. So, instead of having to travel hundreds of miles to arrive in a different climate, Andean people can walk as little as 60 miles to go from a tropical forest in the lowlands to the frozen tundra of the highlands. An Andean family group might make its base in the temperate quechua zone located in the highlands, where family members would grow maize, beans, garden vegetables, quinoa (a high protein grain), potatoes and Asian grains such as wheat and barley. Some family members descend to the ceja de selva on the eastern slopes of the Andes to tend fields of maize, coca, fruit, pepper, and other staples. They can descend farther onto the plains of the Amazon forest to cultivate manioc, a root crop. They also maintain herds of llama and alpaca in the higher pasturelands. Plants with different planting and harvesting times can be grown at different altitudes. Various plots of land farmed by one family group might be two or three days apart by foot.

This system, called a “vertical economy,” had many advantages in the harsh Andean climate. First, it gives a community access to a wide variety of foods and other products. Second, it protects them against the impact of harsh and unpredictable weather conditions—if frost or drought destroys the crop at one elevation, the community can fall back on the harvest in another ecological niche. Andean farmers also plant several (sometimes dozens) of varieties of one crop like potatoes in a single field so that at least some plants will survive the season’s unpredictable temperature and rainfall.

Andean people developed a technique for food storage that actually turned their harsh environment into an asset. Living at altitudes of about two miles above sea level, they had as many as 300 nights of frost and heat from strong sunlight during the day. They used this combination of hot and cold to “freeze dry” meat and potatoes that were left outside to alternately freeze and dry over a long period of time. The Incas called the dried meat charqui. It lent its name to the dried meat we call beef jerky. Andean people also made chuño by softening potatoes in water and leaving them outside to freeze at night. During the day they dried in the hot sun. The freeze-dried foods could be stored in warehouses for several years and used during periods of drought or other natural disasters. The ability to store food was crucial, since frequent frosts, hail and drought often led to crop failures in two or three years out of four.

5. From Hunter to Farmer

People living in this land of extremes have devised different ways of using the region’s resources. Scientists now believe that the first people proba-

“Genetically Engineering” the Potato

The potato shows the most biodiversity, or genetic variation, of any food crop. Thousands of varieties vary by size and shape, as well as by their ability to resist frost, pests, disease and drought. Some types mature in a short time, a crucial factor at high elevations, where the growing season is short. Potatoes come in a variety of colors, from the familiar white and yellow to purple, red, orange or brown. Some potato varieties are carnivorous, meaning that they devour their prey. They produce a sticky substance that traps insects, which are gradually absorbed by the plant as the insects decompose. Another repels insects by giving off an unpleasant odor. While there are more than 200 wild potato species, all edible potatoes belong to a single species, called Solanum tuberosum.

The potato was probably domesticated between 7,000 and 10,000 years ago in the Andes region, possibly in the Lake Titicaca area. The Andean people selected potatoes with desirable characteristics and cross-bred them over time to develop new varieties that thrived in a variety of conditions. They developed different potato varieties that could tolerate the semi-arid conditions of coastal valleys. Some flourished in subtropical forests, and still others thrived in cooler plateaus. Others could survived in high, cold mountains with thin atmosphere. Andean people developed potatoes that can survive in altitudes of up to 14,750 feet. These bitter potatoes are processed to remove bitterness by being freeze-dried into chuño.

The potato—either fresh or freeze dried—is often depicted on pottery produced by pre-Inca and Inca artists. The Aymara people, who lived around Lake Titicaca, described units of time in terms of how long it takes to cook a potato! So,
Finally arrived in South America from the north between 12,000 and 15,000 years ago. For thousands of years, people hunted game and gathered wild foods. Between about 8000 and 3000 BC, some groups gradually began to supplement their diets by planting some crops. Over time farmers developed many new plant varieties by selecting wild plants with desired traits, planting and cultivating them, and using some of the seeds the following year. This process was repeated over a period of several hundred years until a new plant variety was created. Highland people developed a variety of grains and tubers, such as the potato, that could survive in the dry, high altitude climate. Other plants, such as peanuts, beans, squash, sweet potatoes and manioc, were cultivated along the coast and in lower altitude mountain regions and in the tropical rainforest.

The first villages appeared on the seacoast between 5700 and 3000 BC. The people obtained almost all of their protein from the fish and shellfish they caught in the sea. In about 4000 BC, maize, or corn, was introduced to Peru from Mexico, but it remained a minor part of the diet for many millennia. Eventually, corn came to play a very important role in Andean culture, both as a food and as the base of chicha, a beer used in religious rituals. People of the Andes also grew the coca plant. They chewed its leaves and made coca tea to deaden hunger pangs, relieve the effects of altitude sickness and provide necessary vitamins and minerals. The plant was so important to the Andean people that it was used in religious rituals and sacrificed to the gods. Coca was originally used in Coca Cola. Today, coca plants are still grown legally in the Andes region for chewing and herbal tea. Coca is also grown to make cocaine, an illegal narcotic drug that causes serious problems throughout the world. By 2500 BC, Andean people had fully domesticated the llama and alpaca, two animals related to the camel, which were used for wool, fuel, meat and transport.

Beginning in about 2500 BC, coastal and highland people developed irrigation systems to increase agricultural yields. People living in the coastal desert regions built elaborate irrigation systems to harness the many rivers that flowed from the mountains to the sea. Between about 1800 and 800 BC, the people of the highlands began building terraces to create flat areas for fields and to prevent rainfall runoff and soil erosion. Also during this period, craftsmen began working with gold and copper, and people began using looms to weave cloth from llama and alpaca wool. Andean people started making ceramics, or pottery, in about 1800 BC, about 2,000 years after it appeared in Ecuador and Colombia.

6. Who Were the Inca?

Before the Inca Empire united the central Andes region, the area was divided into a multitude of political and language groups, which were often limited to a single river valley. Scientists working in Peru have determined that the Incas originated in the Cuzco Valley sometime around AD 1000. Because they had no written language, the Inca left no written record of their history. They transmitted their history orally, and it is difficult for historians to determine how much of their stories are legend...
and how much is based on actual events. Some versions of Inca oral history list the names of 13 Inca emperors, but the first six were probably mythical.

Between AD 1200 and 1438, the Incas gradually became the dominant group in the Cuzco area. Wiracocha Inca started to expand Inca territory in the Cuzco region by force. In 1438, a neighboring tribe, the Chancas, attacked the Incas. Wiracocha and his son, Inca Urcon, fled the invaders. But another son, Inca Yapanqui, rallied some of the Inca soldiers and appealed to surrounding tribes to defend Cuzco. When only a few soldiers responded to his call to arms, he asked the earth for help, and cried out that even the stones scattered around the city were turning into warriors to help his cause. After the Incas captured the Chanca stone idol, manywavering warriors joined Yapanqui’s army, and he defeated the Chanca. When Wiracocha named Urcon as emperor, the Inca nobles rebelled, forcing Wiracocha to give up his throne. Prince Yapanqui became emperor, or Sapa Inca, and changed his name to Pachacuti—which means “earthquake” or “he who transforms” in Quechua.

Pachacuti lived up to his new name by leveling Cuzco and rebuilding it as an imperial capital. He reorganized the Inca religion, making Inti, the Sun God, the most important Inca god, and establishing the worship of Wiracocha, the Creator god. He built the Coricancha, the temple dedicated to Inti that awed the Spanish conquistadores.

Pachacuti conquered the densely populated region around Lake Titicaca. His son extended Inca control as far north as Quito, Ecuador, and took over the coastal and highland regions of Peru. In 1471, the son became emperor, taking the name Topa Inca, and continued to extend the empire south into central Chile. He conquered large areas of what is now Bolivia, and parts of present-day Argentina. Huayna Capac, Topa Inca’s son, became emperor in 1493. He extended the empire’s borders to southern Colombia and added some jungle area in eastern Peru. By 1527, the empire extended 3,416 miles along the Andes.

After governing for almost 35 years, Huayna Capac died suddenly. Historians think he died of smallpox, which was introduced by the Spaniards to the New World and spread like wildfire among Native Americans, who lacked immunity to European diseases. In fact, European diseases spread so quickly among Native Americans that they traveled throughout the New World even faster than the Europeans did. Huayna Capac died without naming an heir. Two of his sons, Huascar and Atahualpa, fought each other for the throne in a civil war that lasted five years. The Spanish arrived on the coast at just about the time that Atahualpa’s forces defeated Huascar.

7. The Spanish Conquest

A small Spanish force, led by Francisco Pizarro, quickly conquered the Inca Empire through a combination of superior weapons, trickery and luck. The empire had already been weakened by the introduction of European diseases, especially smallpox, and the five-year civil war. Pizarro landed on the coast in 1531 with a force of just 260 men. They traveled to Cajamarca, where Atahualpa was encamped with an army of thousands of soldiers on his way to Cuzco to be invested as the new emperor. The Spaniards hid men, horses and guns in the large halls surrounding the town’s central plaza. Atahualpa entered the plaza unarmed, along with several thousand guards. The Spaniards charged on horseback and fired their canons into the crowded square. As many as 7,000 Incas were killed, and the emperor captured. Not one Spaniard lost his life. The Spanish demanded that Inca officials hand over a huge ransom in gold and silver in order to free the emperor. Inca officials brought rooms full of gold and silver objects over several months—an estimated $50 million in today’s dollars. But even this did not save the Inca emperor, who was executed on Pizarro’s order eight months after he was captured. The Spaniards named Thupa Wallpa, a younger brother of Huascar, as a puppet ruler.
While the supporters of Atahualpa mourned his death, allies of Huascar cheered his execution. Some ethnic groups who resented Inca rule sided with the Spanish. Fighting continued for several months, but the Spanish and their native allies soon managed to defeat Inca forces in Peru and triumphantly entered Cuzco, exactly one year after confronting Atahualpa at Cajamarca. Manco Inca was installed as Sapa Inca and at first cooperated with the Spanish conquerors. But in 1536 he led a massive attack involving between 200,000 and 400,000 troops on Cuzco, where a force of only a few hundred Spaniards withstood the Inca assault for months. After failing to run the Spaniards out of Inca territory, Manco Inca retreated to the isolated Vilcabamba region in the lower reaches of the Urubamba River Valley, about 125 miles from Cuzco, where he maintained an independent Inca state for 36 more years. Spanish forces captured and executed Thupa Amaru, the last Inca leader, in 1572.

8. Administering a Vast Empire

An empire is a government that controls a huge territory and millions of people. It usually encompasses many different ethnic groups. Empires usually gain control over other areas by military force, but control can also be economic or political. The leaders of empires need to develop certain mechanisms to exert control over their vast territory, such as a road system, a common language, an administrative system and an army.

One reason the Inca Empire ran smoothly is that the Inca rulers took traditions that already existed in the Andes region and altered them to serve in the administration of the Inca state. For example, a road system had already been built by previous civilizations in various parts of the Inca Empire. The Inca emperors expanded it so that it connected the entire empire. Inca emperors also used the traditional mita system of sharing labor as the basis for obtaining labor services from all households. (See Section F, “The Mita System,” page 16.)

A. The ayllu

The basic unit of society in the Andean highlands was the ayllu, a group of related families who traced their origins back to a common ancestor and were responsible for honoring him by providing ritual offerings. People were expected to marry someone from their own ayllu.

Ayllu members shared land and exchanged labor throughout the agricultural year. For example, members of an ayllu would work together to plow and plant fields, take care of llama herds, build a house, and maintain irrigation canals. Ayllu members helped each other—if one member of an ayllu was called to serve in the army for several months, other members would perform his work. Strict accounting was involved—if someone performed a job for another ayllu member, he or she would expect an equal amount of labor in return. Payment could be the same service—for example, plowing five rows in a field—or giving a textile that took the same number of hours to make. Food was also used to repay someone for work performed.

Inca administrators used the ayllu as the basic unit for determining the amount of goods and mita labor owed. Ayllus were grouped into admin-
istrative units of 10,000 households and were further subdivided into units of 5,000, 1,000, 500 and 100 households.

B. Inca hierarchy

The Inca Empire was organized in a strict hierarchy starting with the emperor and reaching all the way down to individual households. The Sapa Inca, or Ultimate Inca, had complete power. He was considered a descendant of the sun god. The empire was divided into four quarters, and a close relative of the emperor was lord (apu) of each quarter. The four apus made up the Supreme Council, which advised the Sapa Inca on important matters. Royal governors, usually but not always Incas, headed each of the provinces, which often encompassed a single ethnic group. The empire contained over 80 provinces at its peak.

Each province had a hierarchy of curacas who were responsible for between 100 and 10,000 households. The curacas appointed foremen, who were in charge of between 10 and 50 taxpaying households. The curacas carried out many tasks vital to the running of the empire. They determined how much land a household needed each year to support itself, based on the number of people in the family and how much the family owed in mita labor and agricultural products. The curacas were responsible for collecting what was owed and seeing that it was stored properly. Curacas were in charge of managing the ayllu’s resources, resolving quarrels, and maintaining the community’s well being. If a disaster occurred, the curaca was held responsible. One curaca was put to death when a devastating El Niño destroyed his ayllu’s territory. Curacas were expected to be generous and provide ayllu members with food and chicha during festivals. Curacas appointed by the Inca were often former leaders of conquered groups. The position became hereditary, so that sons of curacas were sent to Cuzco to be trained, returned to the home province and became curacas. Usually curacas were men, but women could also perform the role.

C. Connecting an empire

The Inca rulers realized that to govern a huge empire, they needed a common language, so they made their tongue, Quechua, the official language of the empire. But local groups could still use their own language for daily activities.

The Inca rulers needed a system of communicating with all parts of the empire. So they expanded the existing roads into an elaborate system that ran throughout the empire. The road system was over 25,000 miles long. One road ran along the coast, and another lay inland along the Andes Mountains. Bridges crossed broad rivers as well as rushing streams that cut through deep mountain valleys. Shorter roads linked the two main roads.

The road system was used almost entirely by people on official business—the Inca emperor and his court examining the realm, caravans of llama herders transporting goods to be housed in storehouses, soldiers marching to put down an uprising in a rebellious province, administra-
tors on official business, and runners delivering messages. Ordinary people could use the roads only if granted official permission.

Runners, called *chasquis*, lived in small huts that were built every four to six miles along the road. The messengers would run to the next way station, shouting the message to the next *chasqui*. Messages could travel about 150 miles a day in this manner. The messengers probably carried *quipus* to assure that their messages did not get distorted by frequent repetition. *Chasquis* also carried goods to the emperor, bringing fish from the coast to Cuzco in just two days.

Inca arm\ies used the roads in time of war to move quickly into battle. Storehouses built along the way held weapons and supplies, including lances and darts, dried food, blankets and even sandals for soldiers to use in time of war. If crops failed in one area, food was distributed to area residents from the warehouses. The local community was expected to refill the storage houses when crops were plentiful.

D. Land ownership

Our government is financed by taxes that all working people pay. But the Inca Empire did not use money. How was their complex government supported?

The Inca emperor owned all land in the empire. Agricultural land in each community was divided into three parts. Local farmers worked all the land, but they were allowed to keep only the products from one portion of the fields. The other two portions of the agricultural yield went to support Inca religious leaders and the Inca government. Herds of llamas and alpacas were divided up in a similar manner—one part of the wool went to the emperor, one part to the priests, and the local community was entitled to keep only the wool from the community herds. The exact proportion each group received depended upon local needs.

E. Irrigation and terracing

The land along the Pacific coast and in the highlands is dry and requires irrigation to produce reliable crop yields. People living in the *arid* deserts along the coast had built elaborate irrigation systems to harness the many rivers that flowed from the mountains to the ocean. The Incas expanded this system to make it more productive.

In the highlands, farmers had long built terraces to create more surface area for farming. Terracing involves building large retaining walls on a mountain slope and filling in the space between the wall and the slope above with soil. Terracing prevents soil erosion and rainfall runoff. Channels divert spring water and streams to water the tiny fields. Farmers had been terracing the slopes of the Andes for centuries, and the Incas greatly expanded the amount of agricultural land by building terraces in conquered lands throughout the Andes. At the height of the Inca empire, about 2.47 million acres of irrigated terraces were in cultivation. Andean farmers still use some of these terraces today, but many have fallen into ruin.

Building terraces, irrigation systems and roads requires a high level of or-
ganization and the labor of many workers. Where did Inca administrators find workers to carry out these major engineering projects?

F. The mita system

As we have seen, the Incas did not have money, and so the government could not collect taxes as we know them. Instead, Inca administrators required adult men to work for the state for a certain number of days per year. This system is called the *mita* system. As soon as a man married, he became the head of a household and was obligated to perform *mita* work. Each person was assigned a specific job according to his skills. For example, a skilled weaver would be assigned to make cloth, and a fast runner would be assigned to be a *chasqui* runner. The foot soldiers in the Inca army were farmers who were serving their *mita* labor obligation. Pachacuti rebuilt Cuzco by calling 30,000 men to contribute *mita* labor. Both women and men were required to weave a certain amount of cloth for the state each year. Other activities carried out with *mita* labor included farming, mining, road and bridge building, building temples and other public monuments, transportation of goods, building canals, terraces and irrigation systems, and making pottery and metalwork. Some ethnic groups were considered to be especially skilled at certain tasks and these were therefore assigned to them. For example, one group was thought to be especially good at carrying litters (a sort of platform on railings used to carry important people). Others were gifted stonemasons, dancers or warriors. Some groups were considered “good for nothing,” but they were assigned *mita* work anyway. One group was required to gather reeds, and another to turn in a basket of live lice every four months!

Although every man was expected to contribute work each year for the empire, only a few men in a village would be called to work at one time so that other family members could take over their work at home. The length of time a person was expected to do *mita* work varied according to the task assigned, but usually lasted no more than two to three months per year. The person assigned a specific task could get family members to help him in order to make the length of *mita* service shorter, so it was beneficial to have a large family. Although *mita* work was required, and probably resented by non-Inca ethnic groups who became incorporated into the empire, it was really an extension of the Andean custom of each individual working for the group. Now each head of household was performing labor for a certain period of time for the Inca state.

Workers and their families received something in return for the labor they contributed to the state. Both *curacas* and the Inca emperor hosted festivals periodically, in which they gave food and drink to everyone in the community. These festivals were rewards after workers had completed plowing, planting, harvest and canal cleaning chores. The emperor also gave textiles and metal objects as an expression of generosity and to symbolize his gratitude for *mita* labor. For example, soldiers received blankets.

The Inca Empire also employed fulltime skilled craftsmen to produce luxury textiles, elegant pottery and exquisite objects of gold and silver. The emperor gave these luxury goods to leaders of conquered people, to members of the Inca nobility and to Inca religious leaders. They were also placed in the graves of important people.

G. Quipu

The Inca ruler and his administrators needed detailed information on what was happening in all parts of the empire. They needed to know how many people lived in each province, how much each province was producing, and how much it owed the government in agricultural products and *mita* labor. How did Inca bureaucrats keep records of all this important information if they did not have writing?

The Inca used an ingenious tool that had been developed by an earlier civilization in the region for keeping track of all kinds of information. The object, called a *quipu*, is simply a long string held
horizontally with shorter strings of many colors tied to it. (See drawing). Each of these threads can have other threads tied to it. The threads have different types of knots to represent the numbers 0 to 9. For example, a knot representing the number 6 tied at four inches on a 10-inch string could represent 6,000 (its position at four inches from the main string would be read as the thousandths column). Quipus could not be used to add, subtract or multiply. Specially trained administrators called *quipucamayocs* learned to “read” the quipus. They used stones and counting trays similar to the abacus for doing calculations, and then transferred the information back to the quipu.

The quipu was used to record all kinds of information, from the number of births and deaths in a province, the number of llamas or alpacas in a village herd, the amount of corn stored in a storehouse, the amount of gold produced in a province, or the amount of *mita* textiles a community owed. Colored strings represented different things—for example, a yellow string might represent gold, and a white string silver. The quipu was also used to record historical events and legends and could be used to represent ideas. For example, white might represent peace and red, war. The quipu was lightweight and compact, and could easily be carried by chasqui runners.

Reading a quipu was difficult. Quipucamayocs spent many years learning to read and interpret the quipu. They worked in every provincial capital collecting and recording important information about the province. They would send regular reports back to the emperor in Cuzco. He and his advisors then decided how much the province owed in agricultural products and *mita* service. Being a quipucamayoc was often hereditary, with quipu readers passing their skills down to their sons. Sons of Inca nobility and provincial rulers learned to read the quipu at a school in Cuzco.

This complex system for collecting information collapsed after the Spanish Conquest. When the Spaniards saw the Incas using the quipu, they had little understanding of its meaning. They often destroyed them, thinking they were ungodly. All we know about what information quipus contained is from early trials, in which quipucamayocs interpreted quipus and Spanish court officials copied down what the quipucamayoc said. (See *mita* handout, From Tribute to Taxes, page 31.) But these quipus were not preserved. So the secret of deciphering the quipu died with the last quipucamayoc. Although scholars have studied the quipu extensively, no one can decipher a quipu with certainty today. Some Andean herders still use a simplified version of the quipu to keep track of their llama herds. It is less complex than the quipus used during Inca times, with fewer cords, types of knots, and colors.

H. Inca religion

Perhaps because they lived in a harsh and unpredictable environment, the Inca practiced religious rituals designed to win the favor of the gods, who were often associated with natural forces such as the sun, water, or weather. The Inca people gave precious things to the gods to earn their favor.
The Inca religion grew out of the beliefs of Andean people regarding natural forces. Andean people have long worshipped the natural world around them, including mountains, rivers, lakes, the ocean, and constellations. They identify natural features such as especially high mountains, springs and large stones as sacred places, called *huacas*.

The Inca worshipped the sun as the ultimate giver of life and celebrate festivals to assure that the sun will continue to appear each day. They used felines and snakes as symbols in their religious art.

Pachacuti reorganized the Inca religion. He created a special relationship between himself and the sun, proclaiming that the Inca emperor was the sun’s son. Pachacuti built the elaborate temple to the sun in Cuzco that awed the Spanish. *Wiracocha* was the god of creation who was believed to have created all things, including the sun, moon and stars, as well as the earth and human beings. The Inca people believed that Illapa, the thunder or weather god, controlled rain. He was asked to provide enough rainfall at critical points during the agricultural cycle. Mama-Quilla, the moon god, was the wife of the sun. The festival of the moon was held near the spring equinox, at the beginning of the planting season. Pachamama, the god of the earth, and Mama-Cocha, the god of the sea, were also female gods. Many other local deities existed to protect herds of llamas, wild animals and crops.

Andean people also considered the bodies of dead people to be sacred. The bodies of Inca emperors were mumified after death. The *mummies* were brought out for display during festivals and given things to eat and drink. Founding ancestors of *ayllus* were also mumified. *Ayllu* members honored them by displaying them during festivals and providing them with ritual offerings, including food and *chicha*.

A large group of male and female priests worshipped the many gods and maintained their shrines. The highest priest, usually the brother or uncle of the emperor, worshipped the sun. A group of women called *aqllakuna* made textiles and *chicha* for the temples. The priests and attendants of Inca gods were supported by the agricultural goods produced by the portion of the land under Inca control.

Major festivals took place in December at the beginning of the rainy season, and included dancing, drinking and sacrifice. Another important festival occurred in May to celebrate the corn harvest. Many llamas were sacrificed, and the meat was either eaten or burned. In June, a festival to the sun god Inti took place near Cuzco. Only royal Inca men could participate. The festival included llama sacrifices, dancing, and drinking *chicha*.

Inca beliefs required people to observe many rituals tied to the agricultural calendar. These rituals involved the sacrifice of precious objects, including textiles, *coca, chicha*, and llamas. Children were sacrificed only on rare occasions after natural disasters, war, or during the crowning of a new emperor.

9. Learning About the Inca

Because the Incas had no written language, scholars studying them have had to rely on other sources of information. These include:

— reports made by Spanish observers who conquered the Incas;
— archaeological remains left by the Inca people, such as buildings, pottery, textiles, tools, metal objects and burial sites; and
— studies of people living today in the Andes who still practice some Inca traditions.

Each source of information has *biases* or other limitations. Biases arise from the observer’s opinions or points of view. The Spanish officials, soldiers and priests were biased in their reporting of Inca life, because they wanted to justify their conquest of the Inca. Most portrayed Andean reli-
gion unfavorably and some exaggerated the scope of human sacrifice. Early Spanish observers often misunderstood Andean culture and language. For example, they called the Inca’s language Quechua, which was the Inca word for “highland valley.” The Incas called their language runasimí, or “human speech.”

After the Spanish Conquest, some people with Inca heritage learned to write Spanish, and several wrote accounts of life during Inca times. But these accounts were also biased in that they may have portrayed Inca rulers as more just and powerful than they actually were. These individuals also tried to use these accounts to increase their personal status. They were also Catholic, so they were often critical of the Inca religion.

Archaeologists have studied the physical remains of the Inca culture extensively. They have reconstructed the elaborate road system, examined gravesites to learn about burial customs and religious beliefs, and studied Inca crafts such as pottery, metal objects and textiles. They have also excavated Inca cities to learn about how people lived. This source of information, while valuable, is incomplete. The Spanish destroyed much of the Inca’s treasure when they conquered the Inca Empire. For example, they melted down practically all of the precious gold and silver objects made by Inca craftsmen and sent it back to Spain. Over the centuries, people have looted the graves of Inca and other Andean people, leaving little behind for archaeologists to examine. As we have seen, some artifacts, like the quipu, are indecipherable, since the ability to read the quipu died with the last quipucamayoc. Many important objects, such as textiles and things made of wood, rot in humid climates. In addition, many aspects of Inca life left no physical record. Religious beliefs and legends, while very important to Inca culture, cannot be learned about solely from the physical objects that have survived until today.

10. Modern-day Andean People

Today, millions of people still live in the Andean highlands. They use some of the crops and subsistence practices developed in Inca times. Using terraces built by the Inca, they grow potatoes, herd llamas and alpacas, and weave beautiful textiles. Some continue Inca traditions such as drinking chicha and eating cuyes (guinea pigs) during religious festivals. Seven million also continue to speak Quechua, the language of the Inca state.

Social scientists called **anthropologists** study these people to learn about cultural traditions that may go back to Inca times. But many traditions have been modified by contact with Spanish culture as well as modern influences. For example, an Indian group called the Qero still produces beautiful textiles. They hold a religious ceremony at Easter that involves blessing the finest textiles produced during the year. The festival begins with people parading two crosses under an arch hung with textiles and continues with a ceremony where participants drink chicha. In another festival, known as Qoylluri Riti, Quechua-speaking farmers make a pilgrimage to a snow-capped peak. The shrine near the summit, however, is dedicated to the Virgin Mary, thus combining Catholicism with earlier traditions of mountain worship. These festivals illustrate how Inca customs and Spanish traditions are often blended into a new ritual. Anthropologists have to determine how these practices, and their meanings, have changed over time.

Today, the people who live in the Andes Mountains have a culture that is a mixture of Inca, colonial Spanish and more modern influences. Isolated by imposing mountains, some villages have preserved their culture more than many other native groups in the Americas.

But many highland traditions are disappearing. Many highland people have moved to the coastal cities in search of an easier way of life and greater opportunities for their children. They are replacing their diet of potatoes and quinua, a high protein grain, with pasta and rice, which, while easier to prepare, is less nutritious. They drink bottled beer rather than locally made chicha.
ers remain in the mountains but adopt modern practices such as wearing machine-made clothing rather than weaving their own textiles.

11. Conclusion

The Inca Empire was one of the most highly developed civilizations of its time. Unlike the Roman Empire, it was at its peak when it was conquered by outsiders, with superior weapons and the horse, which gave them an advantage on the battlefield. European diseases introduced by the Spanish decimated the Inca people even before the invaders arrived on their shores.

The Inca culture is of interest to scholars because its leaders developed a highly organized state that ruled over millions of people living in a vast territory without the aid of money, writing or the wheel. By building on indigenous institutions, such as the ayllu, mita labor, the quipu and the vertical economy, Inca rulers controlled a vast empire and managed to provide basic shelter and food for millions of people in an environment of harsh extremes.

Sources

Richardson III, James, 1994. People of the Andes, St. Remy Press, Montreal, Canada.

Niles, Susan, in press. The Nature of Inca Royal Estates.

V. Lesson Plans

1. Introduction

Overview

Students will be introduced to the Inca Empire. They will learn the name “Machu Picchu” and their curiosity will be piqued as to why the site was built.

Materials

Video: The Incas, PBS Odyssey series (see Additional Resources, page 45).

Introduction

Explain that the class will be visiting an exhibition at the Peabody Museum in New Haven about Machu Picchu, a site located in Peru. Relate that the Inca people built Machu Picchu at about the time Christopher Columbus came to the Americas. After the Spanish conquered the Inca Empire, the site lay in ruin for several centuries until it was rediscovered by Hiram Bingham, an American historian at Yale University, in 1911. Bingham and others speculated as to why the Inca people would build a town in such an isolated place. Over the decades, archaeologists have developed several explanations for why Machu Picchu was built. Students will try to solve the mystery of Machu Picchu’s purpose by learning about the Inca Empire.

Procedures

Inquiry question

Tell students that throughout the unit, they will be learning about how Inca society was able to obtain basic necessities like food and shelter in a harsh environment. Ask students to take notes throughout the unit on the many techniques Andean people created to modify and take advantage of their environment. (You may want to have a bulletin board where students can post ideas or illustrations.) Explain that they will be writing an essay at the end of the unit on this question.

1. Introduction: Show PBS video The Incas. (As much as time allows, but be sure to include the first 16 minutes and the last 5 minutes.) Ask students how the geographic setting of the Inca Empire as described in the video affected the Andean people.

2. Locate modern-day Peru on a large map or globe. Explain that at one time Peru was the heart of the Inca Empire. Ask how its location in the southern hemisphere affects people’s lives. (Seasons are reversed—their summer is our winter.)

3. Homework: Have students read the background article, “The Inca: From Village to Empire” (Section IV), Section 1, Introduction, Section 2, Inca Gold, and Section 3, Extreme Environment (pages 7 to 9), and complete the word match (page 65) for tomorrow. (Optional: Tell students they will have a quiz on the vocabulary.)
V. Lesson Plans

2. Making a Relief Map

Overview
Students will be introduced to the geography of the Andes region and the impact of the Andes Mountains on the region’s climate and weather.

Materials
A large (2 feet by 3 feet) map of South America without country labels. A small physical map of South America showing elevations and countries. (See for example, World Book terrain and political maps of South America. See Additional Resources to order a large National Geographic map of South America.) Several large containers of play dough or modeling clay (4 to 5 different colors). Toothpicks, paper, cellophane tape.

Procedures

1. Introduction: Review the homework reading. Stress the impact of the Andes Mountains on the region’s weather and the effect of the Peru Current on rainfall.

2. Explain that the class will be creating a relief map of South America. Show the class the physical map of South America. Have students label the countries of South America on the 2 by 3 foot map.

3. Now have them create a three-dimensional map of South America with play dough or modeling clay. The map should show:
 a) the Andes Mountain chain;
 b) the small coastal desert bordering the Pacific Ocean;
 c) the Amazonian basin to the east of the Andes; and
 d) the location of Cuzco and Machu Picchu.

 Different colors should be used to approximate different elevations. Have them label countries that are covered by the modeling clay with toothpick labels. Next, have them draw the Peru Current along the Pacific Coast.

4. Discussion: Return to the inquiry question to discuss how the Andes Mountains affect the climate and weather of western South America and the impact of the Peru Current on rainfall and marine resources.

5. Assessment: Assess each student’s participation in the map activity and subsequent class discussion.

6. Homework: Have students read in the background article, “The Inca: From Village to Empire” (Section IV), Section 4, The Vertical Economy, and Section 5, From Hunter to Farmer (pages 9 to 11) and complete the word match exercise (page 66) for tomorrow. (Optional: Tell students they will have a quiz on vocabulary.)

V. Lesson Plans

3. The Vertical Economy

Overview

Students will learn about how the Andean people utilize the “vertical economy” to take advantage of their environment.

Materials

Handout 1: The Vertical Economy (page 24), world map.

Procedures

Inquiry question

What techniques have Andean people developed to take advantage of their extreme environment?

1. Introduction: Ask students if they have ever tasted space food or freeze-dried foods made for camping. Explain that the people of the Andes have been using similar foods for centuries.

2. Ask a student to describe how temperature changes as altitude increases (it gets colder). Observe that the atmosphere also becomes thinner, so there is less oxygen and carbon dioxide at higher altitudes. Observe that mountains also affect rainfall, with higher altitudes often receiving larger amounts of rain or snow.

3. Review with the class the concept of the “vertical economy” as described in the reading assignment. Ask someone to describe how the Andean people take advantage of the vertical economy by obtaining various products from fields and pastures at different altitudes.

4. Have students fill out Handout 1: The Vertical Economy, showing which crops and animals would be raised at different altitudes in the Andes. (Refer students to pages 9 to 10 of the assigned reading.)

5. Discussion: Ask someone to describe how the Andean people have developed food preservation techniques that take advantage of their extreme climate. Show students samples of chuño and charqui if you can obtain it. (See Additional Resources, page 45.)

6. Assessment: Ask students to make a menu of their favorite meal. Then have them draw a diagram on a map showing where each food item would come from. Ask them to write a paragraph contrasting how and where we get our food versus how and where the Andean people obtain their food. (Our food comes from great distances and travels horizontally, while Andean food comes from a much shorter distance and travels vertically.)

7. Homework: Have students read in the background article, “The Inca: From Village to Empire” (Section IV), Section 6, Who Were the Inca?, and Section 7, The Spanish Conquest (pages 11 to 13), and do the word match (page 68). (Optional quiz.)
V. Lesson Plans

Handout 1: The Vertical Economy

Reread Section 4, The Vertical Economy, of the background article “The Inca: From Village to Empire” (Section IV, pages 9 to 10). Then fill in the blanks on the diagram below, labeling the costa, highlands, altiplano, ceja de selva and selva. List the crops or animals that would be raised in each region (at least two for each region).

![Diagram of the vertical economy in the Inca Empire]

Major life zones in the central Andes.

V. Lesson Plans

4. Timeline

Overview

Students will place the period of the Inca Empire in a time frame.

Materials

World history text.

Procedures

Inquiry question

Place the Inca Empire in time. What was happening elsewhere in the world at about this time?

1. Introduction: Ask someone to cite the approximate dates of the Inca Empire. Explain that the class will be learning about what was happening elsewhere in the world during this period.

2. Timeline: Have students reread in the background article, “The Inca: From Village to Empire” (Section IV), Section 6, Who Were the Inca?, and Section 7, The Spanish Conquest, pages 11 to 13, and ask them to identify five key dates in the history of the Inca Empire. Have them record these events on a sheet of paper. Ask them to research what was happening elsewhere in the world at approximately the same time by referring to a world history text or doing research on the Internet. Have them record events that were occurring at about the same time elsewhere in the world and write a paragraph about their importance.

3. Discussion: How sophisticated was the Inca Empire compared to European, African or Asian cultures?

4. Assessment: Grade each student’s written assignment and participation in class discussion.

5. Homework: Have students read in the background article, “The Inca: From Village to Empire” (Section IV), Section 8, Administering a Vast Empire, subsections A, B and C (pages 13 to 15) and do the word match (page 70). (Optional quiz on vocabulary.)
V. Lesson Plans

5. Comparing Two Empires

Overview
Students will learn about the concept of empire and compare the Inca Empire with another empire.

Materials
Handout 2: Comparing Two Empires (page 27), world history text.

Procedures
Inquiry question
What is an empire? What administrative mechanisms are common to the Roman and Inca empires?

1. Introduction: Explain that students will be learning about the Inca Empire and comparing it to another empire they are familiar with.

2. Ask students what the term “empire” means to them. (See Section 8, Administering a Vast Empire [page 13], of the background article “The Inca: From Village to Empire” [Section IV] for a working definition.) Emphasize that an empire exercises control over a vast territory and many different ethnic groups. Empires have developed techniques for maintaining control over large areas. Control can be military, economic or political in nature.

3. Ask students to give examples of empires they know about. Lead the discussion to a description of the Roman Empire. Explain that they will be comparing the Roman and Inca empires.

4. Ask students to think about what mechanisms would be necessary to rule over a large territory composed of different ethnic groups (a method of communicating, means of moving troops, methods for record-keeping, ways of supporting the empire through some type of taxation).

5. Ask students to write down the key features of an empire. Ask them to describe how the Inca Empire fits this description (ruled over people of different languages and ethnic groups; gained power by force; had an administrative system; used a common language for official business, had a communication system).

6. Have students fill out Handout 2: Comparing Two Empires (page 27).

7. Discussion: Discuss the similarities and differences between the Inca and Roman empires. Have students understand that the two empires had many features in common. The main difference was that the Roman Empire lasted for about 460 years, while the Inca Empire lasted less than 100 years.

8. Assessment: Ask students to write a short essay on the following: Compare and contrast three techniques the Romans and Incas devised to govern a vast territory.

9. Homework: Have students read in background article, “The Inca: From Village to Empire,” Section 8, Administering a Vast Empire, subsections D, E, F and G, pages 15 to 17 and do the word match (page 71). (Optional quiz.)
V. Lesson Plans

Handout 2: Comparing Two Empires

What is an empire? Describe in your own words the characteristics of an empire. (Refer to Section 8, Administering a Vast Empire, in "The Inca: From Village to Empire" (Section IV, page 13) for a definition of "empire.")

Think of an empire you have studied in social studies. What features of an empire did it have?

Now review what you know about the Roman Empire. Then fill out the following grid comparing the Roman Empire and the Inca Empire.

<table>
<thead>
<tr>
<th>Time Span</th>
<th>Roman Empire</th>
<th>Inca Empire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Official language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of road system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of record-keeping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of taxation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What features do the two empires have in common? What features are different? Based on this comparison, what elements of an empire are essential to its functioning? Why?
V. Lesson Plans

6. Making a Quipu

Overview

Students will learn about the *quipu*, a record-keeping device used by the Incas and other Andean people.

Materials

Handout 3: Making a Quipu (page 29) (optional), 4 to 6 balls of string or yarn of different colors, scissors.

Procedure

Inquiry question

How would you keep track of important information if you did not have writing or numbers?

1. Introduction: Lead a class discussion about the *quipu*. What was it? How was it made? Explain that students will be making *quipus* that record important information about themselves and their class.

2. Remind students of the structure of the *quipu*—one long horizontal string, with several strings of different colors tied to the main string. Different knots represent different numbers. Positions on the string (distance from the main string) represent decimal places. Different colors represent different things. (*Note: Boy Scouts and Girl Scouts may be able to teach the class how to make special knots.*)

3. (For more advanced ages) Distribute Handout 3: Making a Quipu (page 29) and review how the various *quipu* knots are made.

4. Provide students with 4 to 6 balls of different colored string or yarn. Tell them they will be making a *quipu* to record two important facts about their lives. Examples could include their date of birth, the number of people in their family, or their address. Also ask them to record two important facts about their class. (*Note: Explain that students do not have to make knots as elaborate as those shown in the handout.*)

5. Discussion: Have students explain their *quipu* to classmates, either in small groups or to the entire class.

6. Assessment: Grade students on whether their *quipu* records four facts and on their presentation of their *quipu*. Ask students to write a short essay describing the advantages and disadvantages of the *quipu*.

7. Homework: Have students read Section 8, Administering a Vast Empire, subsection H (pages 17 to 18), on Inca Religion and the boxed text on The Llama (pages 14 to 15) in the background article, “The Inca: From Village to Empire” and do the word match (page 72). (Optional quiz.)
V. Lesson Plans

Handout 3: Making a Quipu

Quipu means “knot” in Quechua. Quipus are made of strings consisting of cotton or llama wool. One person who has studied the quipu in detail describes them as looking like worn out mops!

Many anthropologists have studied quipus extensively. But while they can describe them, they cannot know for sure what they are counting. So the meaning of the remaining quipus is still a puzzle. They are like a code that has not yet been broken.

Quipus consist of a main string with other strings hanging from it. The main string has a knot at one end and is twisted at the other end, so that the reader knows which end is the beginning and which is the end. The attached strings are looped over the main string, so that the person who is tying the knot has two strands of the string to work with (see illustration, Figure A). There are three types of knots—the single knot (B), the long knot (C) and the figure 8 (D).

V. Lesson Plans

7. The Mita System

Overview

Students will understand how the Spanish Conquest changed the lives of Andean people by analyzing quipus recording taxes owed during two periods.

Materials

Handout 4: From Tribute to Taxes (pages 31 to 32).

Procedure

Inquiry question

How did the Spanish Conquest change the way Andean people lived?

1. Introduction: Explain that students will be discussing the concept of mita labor and studying how this method of supporting the government changed after the Spanish Conquest.

2. Review the concept of mita labor. (Inca subjects were required to work a certain number of days each year for the empire.) Explain that the Spanish Conquest changed the way the government was supported. Now people were required to pay taxes to Spanish lords and the colonial government in the form of goods and silver and gold instead of providing mita labor. Explain that students will be analyzing the information contained in two quipus to compare how the two systems of taxation worked.

3. Distribute Handout 4: From Tribute to Taxes (pages 31 to 32) and complete it as a class.

4. Discussion: Ask students what they can infer about how the Spanish Conquest changed the lives of the Andean people based on the information contained in the two quipus. (Under the Spanish, the Andean people were required to give goods and gold and silver. During the Inca Empire, they were contributing their labor.)

5. Assessment: Ask students to write a one- to two-page journal entry describing how their lives as Andean farmers changed after the Spanish Conquest.

6. Homework: Read Section 9, Learning about the Inca, and Section 10, Modern-Day Andean People (pages 18 to 20), in the background article “The Inca: From Village to Empire” (Section IV), and do the word match (page 73). (Optional quiz.)
V. Lesson Plans

Handout 4: From Tribute to Taxes

On the next page are two lists that were transcribed from *quipus* soon after the Spanish Conquest of the Inca Empire. The first describes the tribute owed by two tribes to the Inca emperor prior to the Spanish Conquest in 1532. The second is a list of payments made by another native group to their Spanish lord in 1558. Compare the two lists and answer the following questions:

1. What were the Yacha and Chupaychu people providing to the Inca emperor? How did this compare to what the Xauxa people were providing to the Spanish lord?

 Yacha, Chupaychu Xauxa

2. Record the nouns listed in the first line describing the tribute owed by the Yacha and Chupaychu people. Are there any verbs in the sentence?

3. Reread the description of a *quipu* provided in the background article “The Inca: From Village to Empire” (Section 8, subsection G, *Quipu*, pages 16 to 17). Does the information given on the first *quipu* described in the handout seem more or less complicated than the description given in the text? How?

4. Is any important information missing from the first *quipu*?

5. What does the information on the second *quipu* suggest about how the Indians’ way of life changed after the Spanish Conquest?

6. Can you see any ways in which the *quipucamayoc* who was reading the *quipu* inferred information rather than just reading it?

7. Write a paragraph describing evidence of misinterpretation on the part of the Spanish scribe who recorded what the *quipucamayoc* was saying.
Handout 4: From Tribute to Taxes
continued

Tribute owed by the Yacha and Chupaychu people to the Inca emperor: †

In addition they gave 400 Indians to plant the fields in Cuzco so that the people might eat and make their offerings to the church. [temple]

In addition [they gave] 50 Indians as servants for Guayna Cava [Huayna Capac]*, and in continuation.

In addition [they gave] Indians to guard the body of Topa Ynga [Inca] Yupanque.**

In addition [they gave] 20 Indians to guard the body of (H)uayna Capac* after his death.

In addition [they gave] 20 Indians for making feathers.

In addition [they gave] 60 Indians to collect honey.

In addition they gave 60 Indians in order to grow coca, which they delivered to Cuzco and to the storehouses of Guanuco and sometimes they delivered 200 sacks and at other times 40.

In addition they gave 500 Indians to go to war with the person of the Inca and to carry the hammocks going to Quito and to other places.

Tribute given by the natives of Xauxa to their Spanish overlord in 1558: †

In addition we gave him in gold and silver in Caxamarca in gold 596 pesos [and] in silver we gave another sum of 596 pesos.

In addition we gave him 4 horse blankets.

In addition we gave him 40 sheep [llamas].

In addition we gave him 149 fanegas [about 1.5 bushels] of maize

In addition we gave him [of] bowls and jugs 2983 vessels.

In addition we gave him 2386 pheasants [partridges].

Let’s Go Camping

As a class, plan an imaginary one-week camping trip that will include the teacher and all students and their families. Have students question their family members to explain what *mita* service was and to see what *mita* services they can provide and for how many hours. In class, have students list all *mita* services they and their family members can contribute. Next, make a list of all the tasks required to have a successful camping trip (include time required for each task). Compare the two lists. Will you have enough *mita* hours to do everything required to have a successful camping trip? If not, assign participants more tasks and see if they will agree to do them.

*Inca emperor who ruled from 1493 to 1527. **Pachacuti’s son and Huayna Capac’s father.

† Source: “From Knots to Narratives: Reconstructing the Art of Historical Record Keeping in the Andes from Spanish Transcriptions of Inka Khipus,” by Gary Urton, in *Ethnohistory* 45:3 (Summer, 1998). Used with permission.
Teacher Handout for From Tribute to Taxes

Students may get the impression that the Yacha and Chupaychu people were giving people to the Inca emperor as slaves. Encourage them to interpret the language in light of what they know about *mita* labor service to realize that what they are actually giving is days of *mita* service. (The use of the term “Indian” has been avoided in the text. It is used here since that is how it appeared in the Spanish translation of how the *quipucamayoc* interpreted the *quipu*.)

Answers to questions:

1. The Yacha and Chupaychu people gave “Indians,” meaning they provided people to work a certain number of days to fulfill *mita* labor requirements; Xauxa people gave gold, silver, blankets, sheep (llamas), maize, bowls and jugs, and pheasants (partridges).

2. Indians, fields, Cuzco, people, offerings, church. Yes—gave, plant, eat, make.

3. The *quipu* described in the court case contains many different types of information, including action words as well as nouns.

4. How long services were provided.

5. They were forced to produce things wanted by the Spanish, especially gold and silver.

6. The *quipucamayoc* assumes that people performed *mita* service to plant the fields in order to give some of the crop to the temple; he recognizes that the amount of coca varied.

7. The Spanish scribe makes it sound like the group is giving people as slaves rather than providing workers as part of *mita* services; he refers to the Indians as making offerings to the church instead of the temple; he refers to llamas as sheep and calls partridges pheasants.
V. Lesson Plans

8. Inca Children at Work and Play

Overview

Students will study illustrations of Inca children to learn about their lives.

Materials

Handout 5: Working with a Primary Document — Illustrations by Felipe Guamán Poma de Ayala (pages 36 to 38).

Procedures

Inquiry question

How were the activities of Inca children similar to those of modern children? How were they different?

1. Introduction: Explain that students will be learning about how Inca children worked and played by studying illustrations drawn by a man who lived during the Inca Empire and the period following the Spanish Conquest.

2. Distribute Handout 5: Working with a Primary Document: The Illustrations of Felipe Guamán Poma de Ayala (pages 36 to 38). Divide the class into eight groups and ask each group to study one drawing and discuss what it tells them about the life of an Inca child. How old is the child shown? What is he or she wearing? How does he or she wear his or her hair? How was his or her life similar to the lives of modern children? How was it different? Have a member of each group read the text accompanying the illustration, and another summarize the group’s discussion about their illustration.

Possible responses:

Similarities: Inca children played games. They had pets. Older children watched younger ones. Teenagers did work similar to adults and paid mita taxes (although at only half the rate of adults).

Differences: Older boys wore knee-length tunics (see illustrations 4, 5 and 6), girls wore longer, mid-calf tunics (see illustrations 3, 6 and 7). Girls wore their hair very short (see illustrations 3, 6 and 7). Most children did not go to school, but instead learned practical skills while working with adults. Their games taught them important skills, like hunting birds. (Ask students if their games teach them skills.) Very young children (5 to 9) performed important work, like looking after younger children, herding llamas, carrying chicha beer and fuel. Older children (18) were responsible for carrying official messages.

3. Discussion: What aspects of Felipe Guamán Poma de Ayala’s life enabled him to provide valuable information about life during the Inca Empire? During Spanish colonial rule? In what ways might he have been biased against the Incas? the Spanish?

Possible responses:

Because he was born during the Inca Empire, Felipe Guamán Poma de Ayala was an eyewitness to daily life during that time. He was sympathetic to that way of life, especially since his father had been an Inca official. He was a practicing Catholic, which may have made him critical of Inca religious practices. He could read and write Spanish, which meant that he had been educated by Spaniards. He condemned the cruel treatment of the native people by Spanish colonialists.
4. Assessment: Have students write a journal entry describing a day in the life of an Inca child. The journal entry should state how old the child is and draw on information obtained from Felipe Gumán Poma de Ayala’s illustrations and class discussion about them.
V. Lesson Plans

Handout 5: Working with a Primary Source
— Illustrations by Felipe Guamán Poma de Ayala

These drawings were made by Felipe Guamán Poma de Ayala, a man who lived in Peru during the first decades of Spanish colonial rule. He wrote a 1400-page “letter” to the king of Spain to educate him about how the native people living in the former Inca Empire were being treated by the Spanish. He described in great detail the Inca Empire, including its history and customs. Guamán Poma probably wrote the letter, addressed to King Philip III of Spain, between 1567 and 1615. He would have been about 90 years old at the time he finished his monumental task, which took over 30 years to complete and involved extensive travel. In order to see how ordinary people lived under the Spanish, the author disguised himself as a poor person.

Guamán Poma, who describes himself as a “person of Indian race” and a Catholic, wrote his work in Spanish. Because he did not have written evidence from Inca sources, he relied on “the colored and knotted cords on which we Indians of Peru used to keep our records.” Guamán Poma was the grandson of Topa Inca Yupanqui, an Inca emperor. His family had ruled what became the province of Chinchaysuyu before it was conquered by the Incas. His father served the Inca emperor Huascar as an ambassador and met Francisco Pizarro before he marched to meet the Inca emperor at Caxamarca. He later fought with the Spanish against Francisco Pizarro’s brother and was given land in return for his loyal service. Guamán Poma was a local chief and described himself as “a protector of the Indians and deputy of the royal [Spanish] administrator.” (Letter to a King, p. 231).

In addition to describing life in the Inca Empire, Guamán Poma chronicled acts of torture and murder committed by the Spanish against the native population. His lengthy work was in part a plea to the Spanish king to provide “good government” in Peru. There is no evidence that the king ever read the three-volume document.

What aspects of Guamán Poma’s life enabled him to provide valuable information about life during the Inca Empire? During Spanish colonial rule?

In what ways might Guamán Poma have been biased against the Incas? The Spanish?

Study the following illustrations and read the captions. What do the drawings tell us about the life of Inca children? How were their lives similar to yours. Different?
Study the following illustrations and read the captions. What do the drawings tell us about the life of Inca children? How were their lives similar to yours. Different?

Figure 1
“The first category consisted of newborn babies up to the age of a month or two and still being rocked in the cradle by their mothers, who are the proper source of milk and affection for these tiny creatures.”

The bandage on the baby’s head was used to shape the skull and make it narrower.

Figure 2
“(C)hildren who were feeding at their mother’s breasts and learning to walk...in their first years of life were incapable of looking after themselves and were often put in the care of elder children so that they should not fall or burn themselves or come to any other harm.”

This one-year-old girl is accompanied by her pet dog.

Figure 3
“(G)irls...between five and nine...were sometimes able to do jobs about the house... Some of them gathered herbs, helped to make maize spirit or looked after babies.”

This five-year-old girl is carrying corn beer in a large jar called an aryballo.

Figure 4
“When they were not playing for their own amusements, they were used to look after the younger children or rock the cradles of the newborn.”

This five-year-old boy is learning to hunt birds with a sling. Inca games often taught children to do useful tasks.

Note: Quotations are taken from “Letter to a King: A Peruvian Chief’s Account of Life Under the Incas and Under Spanish Rule,” by Felipe Guaman Poma de Ayala, translated from Nueva Coronica y Buen Gobierno by Christopher Dilke (New York: E.P. Dutton, 1978).
“The boys [between the ages of 9 and 12] were employed in trapping small birds... Only small tasks like watching the flocks, carrying wood, weaving and twisting thread were entrusted to them. [Most] boys got their education in the fields and were not sent to any other school.”

Only sons of the Inca elite were sent to the Yachayhuasi, or school.

“Coro Tasque serves her superiors and the community.”

This 12-year-old girl is spinning yarn at the same time she is herding llamas and carrying wood for fuel.

“The main occupation of the girls [between the ages of 9 and 12] was picking the large variety of wild flowers in the countryside. These flowers were used for dyeing the fine cloth called cunbe, among other purposes. The girls also gathered nutritious herbs which were dried and stored for a period of up to one year.”

Girls often wore their hair short.

“This fifth category were those between the ages of about 12 and 18.... Boys of this age were employed in the personal service of the rulers and their divinities.... The young girls... performed various useful jobs in and out-of-doors for their parents and grandparents, such as cooking and cleaning the house or helping about the farm. Being submissive and respectful, they quickly learned whatever was expected of them.”

This 18-year-old boy is working as a chasqui, a runner who is carrying a quipu and an official letter (carta). He is required to perform half the labor services of an adult subject of the empire.
V. Lesson Plans

9. Why Was Machu Picchu Built?

Overview
Students will brainstorm about why Machu Picchu was built.

Materials
Handout 6: Can You Solve the Mystery of Machu Picchu?

Procedures
Inquiry question

How would building a town in the Andes be different from building a town in your area? How would you design a building to resist earthquakes?

1. Introduction: Show students a photograph of Machu Picchu and explain that tomorrow they will be going to an exhibition about the site. Explain that Hiram Bingham rediscovered Machu Picchu in 1911. He thought it was the last refuge of the Inca emperor who was fleeing Spanish rule. Explain that historians and archaeologists have been debating about the purpose of Machu Picchu ever since. Tell students that they will be “brainstorming” about why Machu Picchu was built before they visit the exhibition.

2. Distribute Handout 6: Can You Solve the Mystery of Machu Picchu? (pages 40 to 41). After students read the handout, have them brainstorm about Machu Picchu's purpose, either as an entire class or in small groups.

3. Discuss the various theories about why Machu Picchu was built. Record these theories on a bulletin board or chalk board. Explain that tomorrow the class will be going to see the exhibition Machu Picchu: Unveiling the Mystery of the Incas at the Yale Peabody Museum, where they will learn why Machu Picchu was built.

4. Assessment: Evaluate students on their participation in their group's discussion.

5. Homework: Have students define these vocabulary words before they go to the exhibition Machu Picchu: Unveiling the Mystery of the Incas.

- alpaca
- artefacts
- cranial
- Cuzco
- deformation
- empire
- jamb
- miniature
- moat
- plaza
- plumb bob
- retainers
- spring
- terrace
- Torreon
V. Lesson Plans

Handout 6: Can You Solve the Mystery of Machu Picchu?

Hiram Bingham was a young professor of history at Yale University when he decided to go to Peru to search for the legendary “last refuge of the Incas.” He knew from historical documents that Manco Inca, one of the last Inca emperors, built a city in a remote spot in the region of Vilcabamba in an attempt to escape Spanish rule. He had heard about remains of a settlement high in the eastern slopes of the Andes called “Matcho Picchu,” but to his knowledge, no European or American had ever seen the site. It was not mentioned by early Spanish observers.

Bingham set out in 1911 with a small band of Americans and Peruvians to explore the Urubamba River Valley, where he thought the last refuge of the Incas might be located. He got Melchor Arteaga, a local resident, to take him to some ruins, which lay high on a rocky ridge. The Urubamba River flowed around three sides of the mountain more than 1,500 feet below. Bingham was amazed when, after a hard two-hour climb up a steep mountain path, he came upon “a jungle-covered maze of small and large walls, the ruins of buildings made of blocks of white granite, most carefully cut and beautifully fitted together without cement.”*

Bingham took a careful inventory of the buildings and other structures that made up the settlement. He returned a year later to excavate the site, taking thousands of photographs both before and after excavation and removing hundreds of objects, including stone tools, pottery and metal jewelry. After he left the site, he asked himself if this could indeed be “the last refuge of the Inca.”

Below are the clues Bingham had to work with. Your mission is to think carefully about each clue. Then brainstorm as a class: What does each clue suggest about Machu Picchu’s original purpose? Do you think Bingham had found the last refuge of the Incas?

Clues

1. Machu Picchu was built on an extremely remote site, surrounded on three sides by a river that has carved out a deep valley. Towering mountains make access to the site very difficult.
2. The site appears to be built in a single architectural style similar to the Inca capital of Cuzco.
3. The site contains many buildings carefully constructed out of huge stones that fit together so tightly that no mortar is required.
4. The site was surrounded by only a small number of terraces—not enough to produce food for a large population.
5. The site contained many simple tombs, but Bingham did not find elaborate tombs containing precious gold objects and rich textiles that would have been included in the grave of an Inca emperor or members of his family.
6. Excavation of the site revealed many everyday objects such as tools and pottery.
7. The main portion of the site shows little evidence of glass, tiles, nails or other artifacts introduced by the Spanish.
8. Machu Picchu is fairly close to Cuzco, the Inca capital—about a three-day journey on foot.
9. Because it is at a lower altitude and on the slopes above the Amazonian basin, Machu Picchu’s climate is moister and warmer in the cold Andean winter than Cuzco’s.

Handout 6: Can You Solve the Mystery of Machu Picchu?
continued

Question

Had Hiram Bingham found the last refuge of the Incas? Give reasons to support your conclusion or **hypothesis**.

After viewing the exhibition *Machu Picchu: Unveiling the Mystery of the Incas*, you will find out if your hypothesis is correct.
V. Lesson Plans

Teacher Handout

Explanation of Handout 6: Can You Solve the Mystery of Machu Picchu?

Below are some facts that argue against the hypothesis that Machu Picchu was the last refuge of the Incas. They are keyed to the questions in Handout 6.

1,2,3: Manco Inca could not have built such an elaborate assembly of buildings when he was fleeing from the Spanish.

2: The fact that the site was built in one style suggests that it was all built at the same time.

4: The limited number of terraces suggests that the site housed a small permanent population and that the emperor and his attendants brought much of their food from Cuzco.

5: The absence of elaborate tombs suggests that members of the Inca royal family did not live here permanently.

6: Archaeologists have concluded that the Inca emperor brought precious objects with him to Machu Picchu and took them back to Cuzco when he left the site.

7: Because there is little evidence of Spanish artifacts, archaeologists assume that Machu Picchu was abandoned by the Incas around the time of the Spanish Conquest.

8,9: The fact that Machu Picchu is located fairly close to Cuzco in a warmer climate suggests that the site was chosen as a getaway vacation spot for the Inca emperor and his attendants.
V. Lesson Plans

10. Before You Visit the Museum

1. Visit the exhibition on your own, if possible, using the Teacher’s Key (Section VI) as your guide.
2. Make copies of the Student Guide to the exhibition (Section VII) for all of your students.
3. Homework: Have students define the following vocabulary words:

- alpaca
- artifacts
- cranial
- Cuzco
- deformation
- empire
- jamb
- miniature
- moat
- plaza
- plumb bob
- retainers
- spring
- terrace
- Torreon

Note: Explain to students that subsequent Inca leaders, including Manco Inca, fled the Spanish and lived for 36 years in a remote area in Vilcabamba, a forest region 120 miles down the Urubamba River from Cuzco. This site is “the last refuge of the Incas.”

11. Visiting the Exhibition

2. Have students complete the Student Guide (Section VII) during the visit and complete it as homework if necessary.
V. Lesson Plans

12. Summing Up

1. Introduction: Ask students for their reactions to the exhibition Machu Picchu: Unveiling the Mystery of the Incas. What did they like best? What did they learn about the Inca? Did anything surprise them?

2. Give students a few minutes to review their guide to the exhibition and fill in any missing information. Discuss the completed student handout.

3. Discuss why Machu Picchu was built. Compare the purpose described in the exhibition (the emperor’s royal estate for leisure and sacred activities) to the purposes hypothesized by the class in the brainstorming session. Discuss the reasons archaeologists now believe the site was a royal estate (see Teacher Handout, Explanation of Student Handout 6: Can You Solve the Mystery of Machu Picchu?, page 42)

Assessment Essay

Assign the Assessment Essay as homework. Ask students to write an essay on the following topic:

The Inca rulers controlled a vast area and millions of people without the aid of tools such as writing, the wheel and money. Discuss the alternate methods they developed to organize their society.

(You may want to prompt them to discuss the mita system, quipu, and the llama.)

Enrichment Activities

1. Learn how to weave with a backstrap loom.

2. Make a meal using all Andean foods (see Additional Resources, page 45).

3. Build a terrace and irrigation system.

4. Build a suspension bridge.

5. Research life in present-day Peru and compare it to the Inca Empire.
Additional Resources

Books

Most thorough and up-to-date book on the Incas (adult).

Beautifully illustrated book suitable for elementary and middle school students.

Articles

The May 2002 issue of *National Geographic Magazine* has an article, “Inca Rescue,” pages 78 to 91, on attempts to preserve Inca mummies. The issue includes an excellent pull-out wall map of the Inca Empire. See also “How Did Machu Picchu Work?” in “Behind the Scenes” (unnumbered pages).

Videos

Inca Mummies, a companion video to the May 2002 National Geographic article above.

Maps

Enlarged political wall map of South America available from National Geographic website for $16.99 (go to “Online Maps”).

Andean Foods

Andean foods, including *chuño* (black and white potatoes), *manioc flour*, *kiwicha*, and *quinua*, can be purchased at many Latin American grocery stores and some health food stores.

Websites

National Geographic Society

UNESCO

http://whc.unesco.org/sites/274.htm

http://www.unesco.org/whc/wchreview/article5.html

See “Historic Sanctuary of Machu Picchu.”

UNEP World Conservation Monitoring Center

http://www.wcmc.org.uk/protected_areas/

Quipu

http://instruct1.cit.cornell.edu/research/quipu-asher/

Includes a databook cataloguing existing *quipus* throughout the world.
Local New Haven Resources

Videos

The Incas, PBS Odyssey Series video.

Available from Best Video, 1842 Whitney Avenue, Hamden, CT; 203-287-9286. Ask for the special teacher’s rate: $5.00 for four nights.

Andean Foods

Andean foods, including *chuño* (black and white potatoes), *manioc flour*, *kiwicha*, and *quinua*, can be purchased at many Latin American grocery stores and some health food stores.

Chico’s, 151 Truman Street (off Ella Grasso Boulevard), New Haven, CT; (203) 776-8504.
VI. Guide to Machu Picchu: Unveiling the Mystery of the Incas
Teacher’s Key

This guide is designed to help you learn as much as you can about the Incas during your visit to Machu Picchu: Unveiling the Mystery of the Incas. You are to write down answers to the questions as you walk through each room of the exhibition. You will be graded on how complete your answers are. Questions labeled “EC” are more difficult and will earn extra credit points. Bring the handout to your next class—it will serve as the basis for discussion.

Entry Room

Before you enter the exhibition, look at the life-sized llama on display. As they view the exhibition, have students find as many examples as possible of how the llama was used by the Incas in art and everyday life.

Room 1: Film—Unveiling the Mystery of the Incas

View the film Unveiling the Mystery of the Incas and answer the following questions:

1. Where is Machu Picchu located?
 [Andes Mountains of present-day Peru, South America]

2. Give the approximate dates for the beginning and end of the Inca empire.
 [A.D. 1430 to 1532]

3. Who brought Machu Picchu to the world’s attention in 1911?
 [Hiram Bingham, a professor of Latin American history at Yale]

Room 2: Excavation

1. Who are the two men shown in the diorama?
 [Hiram Bingham and his assistant Alvarez]

2. What are they doing?
 [Hiram Bingham is taking photographs, his assistant is sweeping earth from artifacts]

3. When does the scene take place?
 [1912]

4. Look at the background photograph. How is Machu Picchu different today than when Hiram Bingham discovered it? How would it have looked when the Inca emperor lived there?
 [When he discovered it, the city was overgrown with vegetation. When the Inca emperor lived there it looked more like it does today, except that buildings had roofs.]
5. What is the hole at the right of the scene? What is inside?
 a grave; animal bones, ceramic vessels]

6. Look in the display case across the room. It shows some of the objects found in the grave. What was found there?
 [pottery, bones, weaving tools, shawl pins]

7. This room shows Hiram Bingham and his assistant in the process of excavating Machu Picchu. Write a sentence describing what excavation is.
 [Excavation is the process of carefully recovering artifacts for analysis.]

Go into the next room and turn immediately to your left to view the video.

Room 3: Curator’s Tour

Listen to the six-minute video *Curator’s Tour of Machu Picchu* and look at the model of the site as each part is lit. Be sure to get in at the beginning of the video. You may want to hear it twice.

1. Describe Machu Picchu's geographic setting. (Look at the photographs to the left and right of the model.)
 [very mountainous terrain]

2. According to the video’s narrator, what was the purpose of Machu Picchu?
 [a country palace or royal estate for the Inca emperor]

3. According to Richard Burger, how was the Inca emperor's residence designed to show he was important? (list three features)
 [it was isolated, had a private garden, was made of fine stone construction, had fountains to supply water, had a private bath]

4. According to Lucy Salazar, what was the Torreon?
 [a sun temple]

5. Why do archaeologists think it served this purpose?
 [it is similar to a religious temple in Cuzco, has fine stone walls that are curved, has a cave with niches for religious objects]

6. According to Lucy Salazar, what evidence is there that metal objects were made at Machu Picchu?
 [many metal objects were found at the site, evidence that metal workers lived and worked on site]

7. According to Richard Burger, how was Machu Picchu defended? (list three ways)
 [steep cliffs on three sides, guard tower, moat, only one entrance]

8. According to Lucy Salazar, where did the residents of Machu Picchu get their water?
 [a spring]
9. What structures were built at Machu Picchu to carry water?
 [16 stone fountains, canal]

10. According to Lucy Salazar, what did the Incas believe about water?
 [The Incas believed that water cycled through the universe and ensured fertility.]

11. Look at the model. What engineering challenges did the Inca builders and engineers face?
 (list at least three)
 [remote location, steep cliffs, water run off, where to find stone to build, hard to carry stones up steep cliffs, where to get water, where to get soil for terraces]

Turn to the right and go into the room that is paved like an Inca road.

Room 4: Inca Road

1. Look at the huge photo of Machu Picchu. What does it show about Machu Picchu’s climate?
 [cloudy, moist]

2. What are the walls that look like stairs called? Why were they built?
 [terraces; to create a flat surface for growing crops]

3. Look at the map on the left of the Inca road system. On the map at the right, estimate the length of the Inca empire from top to bottom, using the key.
 [2,500 miles]

4. (EC) Who would have built and maintained this road system?
 [laborers doing mita work]

5. What is shown in the black and white drawing?
 [a suspension bridge]

6. Why were bridges necessary in the Inca empire?
 [its geography was very mountainous, many rivers]

7. (EC) Read the paragraph about the llama in the right-hand corner. List one advantage and one disadvantage of llama transport.
 [advantage: llamas follow a lead animal and require little supervision by people;
 disadvantage: llamas can carry only about 100 pounds—they cannot carry adults]

8. Look at the Inca road in the photo on the left. Does it help explain why the Inca did not use the wheel?
 [Yes, the road is very steep and rocky, making it difficult to use a wheeled cart.]

9. Study the objects in the cases. What are they made of?
 [gold, silver, stone, pottery, wood]
10. Choose three objects you like best. What were they used for?
[answers will vary]

Go forward toward the reconstructed house. Before you enter, note how Inca buildings were made.

11. What are the walls made of? Was mortar used?
[stone; no]

12. Inca buildings were very resistant to earthquakes. Can you see why?
[built of large rectangular blocks of stone that are tightly fit together]

13. Look up at the roof. What is it made of?
[thatch or grass]

14. Would this roofing material last very long?
[no, explains why buildings at Machu Picchu do not have roofs]

Room 5: Inca Emperor’s Residence

1. Which man is the Inca emperor? How do you know?
[seated man; he is wearing gold earrings and sandals, is being served a drink in a gold cup]

NOTE: Refer to the written explanation to help answer the following two questions.

2. Listen to the language the emperor and his advisor are speaking. What is it?
[Quechua]

3. Is it still spoken today?
[yes]

4. (EC) What do you think the emperor and his advisor are talking about?
[discussing quipu; emperor is concerned about defending nearby gold mines; orders that amount of coca leaves brought to Machu Picchu be doubled]

5. Where do you think the Inca emperor’s pets came from?
[Amazon River region]

6. Look at the quipu in the large display case. What is it made of?
[llama wool and cotton]

7. Write a brief description of the quipu.
[It is a long string with many shorter strings attached. Some strings have knots tied in them.]

8. What were quipus used for?
[recording information about census figures, taxes paid, keeping oral histories]

9. What does the word quipu mean?
[knot]
10. As you leave the room, look at the Inca tunic in the glass case. This is the only Inca tunic of its kind that has survived. Think about why there are very few remaining examples of Inca textiles.
 [Textiles deteriorate, especially in a damp climate. Many Inca textiles were intentionally destroyed by the Spanish.]

Turn to the right to enter the large room with many glass cases.

Room 6

1. What is the kneeling man on the left doing?
 [pounding metal with a stone hammer]

2. Metalworkers sometimes pound soft metals like silver and gold into a sheet and hammer it to change its shape. Find an example of hammered silver or gold objects in the case.

3. Metalworkers also pour hot metal into molds to make objects. Find three examples in this room of metal objects that were made this way.

4. (EC) Look to the far right in the display case at the carved piece of wood that looks like a man's face. Did you see something elsewhere in the exhibition that could have been made from a form like this?
 [gold and silver drinking vessels shaped like a human face]

5. (EC) How do you think the object was made: by pouring hot metal into a mold, or by making a sheet of metal and hammering it?
 [by hammering a sheet of metal]

6. Find three examples of things made out of pottery and describe what they were used for.
 [answers will vary]

7. Look at the label about “Everyday Life.” Look carefully to see who the man is. What is he doing?
 [The man is Guamán Poma de Ayala. He is walking through Peru finding information for his book.]

8. How many people lived at Machu Picchu when the Inca emperor and his attendants were there?
 [about 600]

9. During what part of the year did the emperor and his attendants stay at Machu Picchu?
 [May to September, the dry season (winter)]

10. Go to the display case with everyday items in it, across from the three video screens. What things in the case are still used today?
 [dice, tweezers, pottery cups, dishes, dolls, needles, plumb bob, axes, knives, mirrors]

11. What everyday Inca items do not have equivalents in our households, and why not?
 [mortar and pestle (we grind food mechanically) shawl pins (we use buttons)]

12. What common items used today are missing from the Inca artifacts found?
 [money, nails, books]
Interactive Explorer/Ongoing Investigations (this room and next)

Divide into four groups. Three groups can explore Machu Picchu on the three "Interactive Explorer" videos. (NOTE: The large screen on the right can be used by large groups to watch what is being shown on the smaller video screen.)

The fourth group should go into the next room and answer the following questions. Be sure your group does the activities in both rooms.

Room 7: Rediscovery Room

Each group will choose one archaeologist to report on by answering the following questions.

1. Watch the video on the screen to your right and choose one scientist. What is his or her name?
2. Describe what he or she is studying.
3. What archaeological techniques is he or she using?
4. What new information has he or she obtained about the daily life of the Inca from this research?
5. Look at the models of skulls in the case. Compare the shapes of the three skulls.
 - [left skull is normally shaped, center skull has flattened forehead, skull on right is more cone-shaped than normal]
6. How did parents shape the skulls of babies?
 - [They wrapped them in cloth or bound them to a cradle board.]
7. Do you think this hurt the babies?
 - [no]
8. Do you think it made them less smart?
 - [no]
9. Why do you think parents might have wanted to shape their children's skulls in this way?
 - [to show they belonged to a certain cultural group]
10. Find the photograph of terraces. What crops were grown in terraces at Machu Picchu?
 - [maize, potatoes, beans]
11. Do you think enough food could be grown on these terraces to feed 600 people?
 - [No, food had to be carried from Cuzco when emperor was in residence.]
12. (EC) Look at “Daily Diet and Bone Chemistry” in the far corner. Read the explanation of how bones can be analyzed to see what people ate at Machu Picchu. What does this bone analysis show about the diet of people who lived there?
 - [They ate a lot of maize, which was 65% of diet.]
13. (EC) How was the importance of this staple food reflected in Inca art? Give specific examples.
 - [gold, coin objects, silver]
Room 8: Epilogue

1. Look at the graph on the left. How much did the Inca population decline around the time of the Spanish Conquest? (give as a percentage)
 [It declined from 14 million to 5 million, or about 66%.]

2. What were some of the diseases that caused this sudden drop in population?
 [smallpox, measles, typhus, scarlet fever, pneumonia, plague]

3. When did the native population of the former Inca empire finally recover?
 [mid-20th century]

4. Find three examples of how modern Peru is a mixture of Spanish and Inca cultures.
 [religious festivals, intermarriage, art has mixture of Spanish and Inca styles]

Summing Up

After the exhibition:
Discuss the handout questions.
Have groups report on their archaeologist.

Homework assignment
Have students write a paragraph on one of the following questions:
1. Why was Machu Picchu built?
2. What was your favorite part of the exhibition?
3. What did you learn about Inca people?
4. How do archaeologists find out about Inca life?
VII. Student Guide to
Machu Picchu: Unveiling the Mystery of the Incas

This guide is designed to help you learn as much as you can about the Incas during your visit to *Machu Picchu: Unveiling the Mystery of the Incas*. You are to write down answers to the questions as you walk through each room of the exhibition. You will be graded on how complete your answers are. Questions labeled “EC” are more difficult and will earn extra credit points. Bring the handout to your next class—it will serve as the basis for discussion.

Entry Room

Before you enter the exhibition, look at the life-sized llama on display. Try to find as many examples as possible in the exhibition of how the Incas used the llama in art and in everyday life.

Room 1: Film—*Unveiling the Mystery of the Incas*

View the film *Unveiling the Mystery of the Incas* and answer the following questions:

1. Where is Machu Picchu located?

2. Give the approximate dates for the beginning and end of the Inca empire.

3. Who brought Machu Picchu to the world’s attention in 1911?

Room 2: Excavation

1. Who are the two men shown in the diorama?

2. What are they doing?

3. When does the scene take place?
4. Look at the background photograph. How is Machu Picchu different today than when Hiram Bingham discovered it? How would it have looked when the Inca emperor lived there?

5. What is the hole at the right of the scene? What is inside?

6. Look in the display case across the room. It shows some of the objects found in the grave. What was found there?

7. This room shows Hiram Bingham and his assistant in the process of excavating Machu Picchu. Write a sentence describing what excavation is.

Go into the next room and turn immediately to your left to view the video.

Room 3: Curator’s Tour

Listen to the six-minute video *Curator’s Tour of Machu Picchu* and look at the model of the site as each part is lit. Be sure to get in at the beginning of the video. You may want to hear it twice.

1. Describe Machu Picchu’s geographic setting. (Look at the photographs to the left and right of the model.)

2. According to the video’s narrator, what was the purpose of Machu Picchu?

3. According to Richard Burger, how was the Inca emperor’s residence designed to show he was important? (list three features)

4. According to Lucy Salazar, what was the Torreon?
5. Why do archaeologists think it served this purpose?

6. According to Lucy Salazar, what evidence is there that metal objects were made at Machu Picchu?

7. According to Richard Burger, how was Machu Picchu defended? (list three ways)

8. According to Lucy Salazar, where did the residents of Machu Picchu get their water?

9. What structures were built at Machu Picchu to carry water?

10. According to Lucy Salazar, what did the Incas believe about water?

11. Look at the model. What engineering challenges did the Inca builders and engineers face? (list at least three)

Turn to the right and go into the room that is paved like an Inca road.

Room 4: Inca Road

1. Look at the huge photo of Machu Picchu. What does it show about Machu Picchu’s climate?

2. What are the walls that look like stairs called? Why were they built?
3. Look at the map on the left of the Inca road system. On the map at the right, estimate the length of the Inca empire from top to bottom, using the key.

4. (EC) Who would have built and maintained this road system?

5. What is shown in the black and white drawing?

6. Why were bridges necessary in the Inca empire?

7. (EC) Read the paragraph about the llama in the right-hand corner. List one advantage and one disadvantage of llama transport.

8. Look at the Inca road in the photo on the left. Does it help explain why the Inca did not use the wheel?

9. Study the objects in the cases. What are they made of?

10. Choose three objects you like best. What were they used for?

Go forward toward the reconstructed house. Before you enter, note how Inca buildings were made.

11. What are the walls made of? Was mortar used?

12. Inca buildings were very resistant to earthquakes. Can you see why?
13. Look up at the roof. What is it made of?

14. Would this roofing material last very long?

Room 5: Inca Emperor’s Residence

1. Which man is the Inca emperor? How do you know?

NOTE: Refer to the written explanation to help answer the following two questions.

2. Listen to the language the emperor and his advisor are speaking. What is it?

3. Is it still spoken today?

4. (EC) What do you think the emperor and his advisor are talking about?

5. Where do you think the Inca emperor’s pets came from?

6. Look at the quipu in the large display case. What is it made of?

7. Write a brief description of the quipu.

8. What were quipus used for?
9. What does the word *quipu* mean?

10. As you leave the room, look at the Inca tunic in the glass case. This is the only Inca tunic of its kind that has survived. Think about why there are very few remaining examples of Inca textiles.

Turn to the right to enter the large room with many glass cases.

Room 6:

1. What is the kneeling man on the left doing?

2. Metalworkers sometimes pound soft metals like silver and gold into a sheet and hammer it to change its shape. Find an example of hammered silver or gold objects in the case.

3. Metalworkers also pour hot metal into molds to make objects. Find three examples in this room of metal objects that were made this way.

4. (EC) Look to the far right in the display case at the carved piece of wood that looks like a man’s face. Did you see something elsewhere in the exhibition that could have been made from a form like this?

5. (EC) How do you think the object was made: by pouring hot metal into a mold, or by making a sheet of metal and hammering it?

6. Find three examples of things made out of pottery and describe what they were used for.
7. Look at the label about “Everyday Life.” Look carefully to see who the man is. What is he doing?

8. How many people lived at Machu Picchu when the Inca emperor and his attendants were there?

9. During what part of the year did the emperor and his attendants stay at Machu Picchu?

10. Go to the display case with everyday items in it, across from the three video screens. What things in the case are still used today?

11. What everyday Inca items do not have equivalents in our households, and why not?

12. What common items used today are missing from the Inca artifacts found?

Interactive Explorer/Ongoing Investigations (this room and next)

Divide into four groups. Three groups can explore Machu Picchu on the three "Interactive Explorer" videos. (NOTE: The large screen on the right can be used by large groups to watch what is being shown on the smaller video screen.)

The fourth group should go into the next room and answer the following questions. Be sure your group does the activities in both rooms.

Room 7: Rediscovery Room

Each group will choose one archaeologist to report on by answering the following questions.

1. Watch the video on the screen to your right and choose one scientist. What is his or her name?
2. Describe what he or she is studying.

3. What archaeological techniques is he or she using?

4. What new information has he or she obtained about the daily life of the Inca from this research?

5. Look at the models of skulls in the case. Compare the shapes of the three skulls.

6. How did parents shape the skulls of babies?

7. Do you think this hurt the babies?

8. Do you think it made them less smart?

9. Why do you think parents might have wanted to shape their children's skulls in this way?

10. Find the photograph of terraces. What crops were grown in terraces at Machu Picchu?

11. Do you think enough food could be grown on these terraces to feed 600 people?
12. (EC) Look at “Daily Diet and Bone Chemistry” in the far corner. Read the explanation of how bones can be analyzed to see what people ate at Machu Picchu. What does this bone analysis show about the diet of people who lived there?

13. (EC) How was the importance of this staple food reflected in the Inca art? Give specific examples.

Room 8: Epilogue

1. Look at the graph on the left. How much did the Inca population decline around the time of the Spanish Conquest? (give as a percentage)

2. What were some of the diseases that caused this sudden drop in population?

3. When did the native population of the former Inca empire finally recover?

4. Find three examples of how modern Peru is a mixture of Spanish and Inca cultures.

Homework assignment

Write a paragraph on one of the following questions:
1. Why was Machu Picchu built?
2. What was your favorite part of the exhibition?
3. What did you learn about Inca people?
4. How do archaeologists find out about Inca life?
Appendices

A. Glossary

Reading Assignment 1: Pages 7 to 9.

Andes Mountains: Mountain chain running along the western coast of South America.

clods: Lumps of dirt.

conquistadores: Spanish soldiers who conquered the Inca Empire and other Native American groups in North and South America.

Coricancha: The temple to Inti, the sun god, built by Pachacuti in Cuzco.

Cuzco: A city in present-day Peru, Cuzco was the capital of the Inca Empire.

El Niño: A warm ocean current that runs south along the Peruvian coast, pushing the Peru Current out to sea. El Niño causes extreme weather-related disturbances in South America, including drought, torrential rains, mudslides and avalanches.

empire: A government that controls a huge territory and millions of people, often encompassing many different ethnic groups. Control may be military, political or economic.

Inca Empire: Empire that governed between 10 and 12 million subjects in the Andes region of South America between about AD 1438 and 1532. The Inca Empire lasted less than 100 years.

Inti: The Inca sun god. He was the second most important god after Wiracocha.

llama: An animal native to South America, related to the camel. The llama is used in the Andes to carry heavy loads. Its wool is used to weave cloth, its hide to make leather, and its meat is eaten.

maize: Corn. Maize was a very important part of the Inca diet and was also used to make chicha, or corn beer.

mortar: A building material made from sand, water and lime, similar to cement, for holding stones together.

Pedro de Cieza de León: A Spanish soldier who wrote about the Inca Empire about 20 years after the Spanish Conquest.

Peru Current (Humboldt Current): A frigid ocean current that flows north along the west coast of South America, carrying cold, nutrient-filled water that supports a rich ecosystem of fish, birds and sea mammals.

plate: Huge sections of the earth’s crust that grind over and under each other, occasionally causing earthquakes.

Tahuantinsuyu: The Quechua word for the Inca Empire.
Appendices

A. Glossary

Reading Assignment 2: Pages 9 to 11.

alpaca: A South American animal related to the camel and llama. Its very soft wool is used to make fine textiles.

altiplano: A high, dry plateau located in southeastern Peru and northwestern Bolivia between the two major Andean ranges.

caja de selva: “Eyebrow of the rainforest,” the area with lush vegetation just above the rainforest on the eastern side of the Andes Mountains.

ceramics: Containers made from clay, also called pottery.

charqui: An Andean freeze-dried meat that can be stored for long periods and easily transported.

chicha: A beer made from corn, chicha is often used by Andean people in festivals and religious ceremonies.

chuño: Freeze-dried potatoes that can be stored for long periods.

coca: A plant native to South America containing a narcotic chemical. Andean people chew the leaves to dull hunger pangs, provide energy and supply nutrients. Coca is grown and processed to make cocaine, a powerful illegal drug.

costa: Coast.

domesticate: The process of taming or cultivating a formerly wild animal or plant for food or other uses.

domestication: The process of taming or cultivating a formerly wild animal or plant for food or other uses.

ecological niches: Small areas that support a specific mix of plant and animal life. Mountainous regions have many ecological niches since variations in altitude create different temperature and rainfall conditions.

highlands: Land above 10,000 feet in altitude.

irrigation: A system of canals and ditches that carries water to fields for crops.

manioc: A tropical plant with starchy roots used in making tapioca. A type of manioc called sweet cassava can be eaten like potatoes.

montaña: High, humid forested environmental zone on the eastern slope of the Andes.

montane cloud forest: Humid, high altitude area that supports lush vegetation. Machu Picchu is located in a montane cloud forest environment.

quechua zone: The highly productive temperate zone on the western slopes and inter-mountain valleys of the Andes.

quinua: High protein grain grown in the Andean highlands.

selva: Rainforest.

sierra: Mountains.
terraces: Structures built in mountainous regions to create a flat surface to plant crops. Retaining walls are built on a slope and soil placed between the wall and mountain slope. Terraces prevent excessive runoff of rain and soil erosion.

topography: Surface features of a place or region, including mountains, hills and valleys.

tubers: Plants with thick, sometimes edible roots, such as potatoes and sweet potatoes.

tundra: Land in a very cold or high altitude region that remains frozen year-round.

vertical economy: In mountainous regions, different animals and crops can be raised at different altitudes. People can produce a variety of foods and other products within a relatively short distance by taking advantage of different ecological niches.
Appendices

A. Glossary

Reading Assignment 3: Pages 11 to 13.

Atahualpa: A son of Huayna Capac, he won the five-year civil war with Huascar, his brother, and was about to be named emperor when the Spanish arrived in the Inca Empire. He was eventually killed by the Spanish.

Cajamarca: The Inca city where Pizarro and Atahualpa, the Inca emperor, met.

Francisco Pizarro: The Spanish soldier who conquered the Inca Empire in 1532.

Huascar: A son of Huayna Capac, he fought and ultimately lost a bloody five-year civil war against his brother Atahualpa just before the Spanish invaded the Inca Empire.

Huayna Capac: The Inca emperor who expanded the empire to its largest extent. After governing for 35 years, he died suddenly of smallpox.

immunity: The body's ability to fight an infectious disease. Native Americans were very susceptible to European diseases such as smallpox because their bodies had not built up immunity by being exposed to the disease over time.

Inca Urcon: Wiracocha's son.

Manco Inca: The Inca leader who fought the Spanish and set up an Inca state in a remote part of the former Inca Empire.

oral history: History that is not written down, but is handed down by one person telling others about events in the past.

Pachacuti Inca (Yapanqui): A son of Wiracocha Inca who eventually became Sapa Inca. After taking the name Pachacuti in 1438, he vastly expanded the Inca Empire through war and reorganized the Inca government.

plaza: The central square in a town or city. Usually public buildings are grouped around the plaza and important public events take place in this open area.

puppet: Someone who is named ruler but is controlled by someone else.

Quechua: The language spoken by the Inca people. The official language of the Inca Empire, it is still spoken today in the central Andean highlands.

ransom: Payment demanded or made before a captive person is set free.

Sapa Inca: The Inca emperor; literally “Ultimate Inca.”

smallpox: A deadly infectious disease brought to the New World by Europeans.

Spanish Conquest: Shortly after Columbus visited the New World, the Spanish invaded and conquered many civilizations in Central, South and North America, including the Inca Empire.

Thupa Amaru: The last Inca leader to resist the Spanish, he was executed in 1572.

Thupa Wallpa: A puppet ruler appointed by the Spanish.

Topa Inca: The son of Pachacuti, he expanded Inca territory in Ecuador, Bolivia, central Chile and
parts of Argentina.

Wiracocha Inca: The first Inca emperor who expanded Inca control beyond the Cuzco Valley. He was named after Wiracocha, the Inca god of creation.
Appendices

A. Glossary

Reading Assignment 4: Pages 13 to 15.

apu: A lord or judge serving the Inca emperor.

arid: Very dry.

ayllu: A related group of families in Andean societies, used as the basis for assigning mita labor tasks.

chasqui: A messenger who relayed official messages.

curaca: An official who supervised from 100 to 10,000 households in the Inca Empire. He or she served under the provincial governor.

hierarchy: An organization of people arranged in higher and lower ranks. Each person takes orders from the person above him or her in the hierarchy.

mita system: The requirement that all male family heads work for a certain number of days for the Inca Empire. Duties included farming, serving in the army, textile weaving, building towns, terraces, irrigation systems and roads, working in mines, and carrying messages. Women were required to weave textiles.

provinces: Political subdivisions similar to U.S. states.
Appendices

A. Glossary

Reading Assignment 5: Pages 15 to 17.

abacus: A device for adding and subtracting that uses rows of beads.

bureaucrat: A government official who carries out orders.

constellation: A group of stars.

quipu: A device for recording numbers, and probably events, developed in South America and used extensively by the Inca emperor to gather information on the empire. The quipu is a long horizontal string with shorter strings extending vertically along it. Knots on the strings stand for different numbers and units. Different colors probably stood for different things that were being counted.

quipucamayoc: A person trained to read a quipu.

ritual: A religious ceremony.
Appendices

A. Glossary

Reading Assignment 6: Pages 17 to 18.

aqllakuna: The “Chosen Women” who wove cloth and made chicha that was consumed in religious rituals.

conopa: A small handmade object used in religious ceremonies by Andean people. They are often in the shape of llamas or other animals.

deuity: A god.

docile: Easy to manage or control.

guanaco: A wild South American animal similar in size and shape to the llama, thought to be the ancestor of llamas and alpacas.

huaca: A site considered sacred to the Incas, such as a mountain, lake, river or rock.

mummy: A dead body preserved from decay, usually by wrapping in cloth.

vicuña: A wild animal of the Andean highlands related to the llama. Its wool is very fine. Only the Inca emperor and nobility were allowed to wear clothing made from vicuña wool.

Wiracocha: The Inca god of creation.
Appendices

A. Glossary

Reading Assignment 7: Pages 18 to 20.

anthropologist: A social scientist who studies modern peoples and their cultures.

archaeologist: A scientist who studies prehistoric human culture, usually by examining physical remains such as buildings, pottery, tools and other objects.

bias: Opinions and values held by a person that influence the way he or she interprets other cultures.

indigenous: Originating in the region or country where found; native.

Qero: A Quechua-speaking ethnic group living in the high mountains about 100 miles from Cuzco who still practice agricultural and herding techniques used during the Inca Empire. They weave beautiful textiles from alpaca wool. Their economic activities encompass three ecological zones: alpaca pastures, potato fields and maize fields.

Qoylluri Riti: A festival, still observed by Quechua-speaking people, where offerings are made at mountain-top shrines to ancient gods believed to inhabit the landscape. These shrines are dedicated to the Virgin Mary.

Runasimi: The name given by the Inca people to their language; literally “human speech.” Scholars think that the Spanish mistakenly called the Inca language “quechua,” an Inca word referring to a temperate and productive ecological zone in the Andean highlands.
Appendices

B. Word Match

Reading Assignment 1

Complete the following word match after reading tomorrow’s homework assignment, pages 7 to 9.

1. ________ empire
2. ________ Andes Mountains
3. ________ Inca Empire
4. ________ Cuzco
5. ________ conquistadores
6. ________ Tahuantinsuyu
7. ________ mortar
8. ________ Coricancha
9. ________ Inti
10. ________ Pedro de Cieza de León
11. ________ clods
12. ________ maize
13. ________ llama
14. ________ plate
15. ________ Peru (Humboldt) Current
16. ________ El Niño

A. Spanish soldiers who conquered the Inca Empire and other Native American groups in North and South America.
B. Mountain chain running along the western coast of South America.
C. A city in present-day Peru; capital of the Inca Empire.
D. A building material made from sand, water and lime, similar to cement, for holding stones together.
E. The temple to Inti, the sun god, built by Pachacuti in Cuzco.
F. A Spanish soldier who wrote about the Inca Empire about 20 years after the Spanish Conquest.
G. Invasion of New World lands by the Spanish that began soon after Columbus arrived in the Americas.
H. Lumps of dirt.
I. Quechua word for the Inca Empire.
J. Huge sections of the earth’s crust that grind against each other, occasionally causing earthquakes.
K. Empire centered in Cuzco (Peru) that governed between 10 and 12 million subjects in the Andes region of South America between about AD 1438 and 1532.
L. A very important part of the Inca diet; used to make chicha, or corn beer.
M. An animal native to South America related to the camel; used in the Andes to carry heavy loads. Its wool is used to weave cloth, its hide to make leather, and its meat is eaten.
N. Frigid ocean current that flows north along the west coast of South America, carrying cold, nutrient-filled water that supports a rich ecosystem of fish, birds and sea mammals.
O. A warm ocean current that runs south along the Peruvian coast; causes extreme weather-related disturbances in South America, including drought, torrential rains, mud slides and avalanches.
P. The Inca sun god. He was the second most important god after Wiracocha.
Appendices
B. Word Match

Reading Assignment 2

Complete the following word match after reading tomorrow’s homework assignment, pages 9 to 11.

1. _______ costa A. Small areas that support a specific mix of plant and animal life. Mountainous regions have many different zones since variations in altitude create different temperature and rainfall conditions.
2. _______ sierra B. Surface features of a place or region, including mountains, hills and valleys.
3. _______ selva C. “Eyebrow of the rainforest.”
4. _______ irrigation D. Humid, high altitude climate that supports lush vegetation.
5. _______ altiplano E. South American animal related to the camel and llama. Its wool is very soft and is used to make fine textiles.
6. _______ highlands F. Freeze-dried potatoes that can be stored for long periods.
7. _______ ceja de selva G. High, dry plateau located in southeastern Peru and northwestern Bolivia between the two major Andean ranges.
8. _______ montane cloud forest H. In mountainous regions, different animals and crops can be raised at different altitudes. People can produce a variety of foods and other products within a relatively short distance by taking advantages of different zones.
9. _______ topography I. An Andean freeze-dried meat that can be stored for long periods and easily transported.
10. _______ ecological niche J. Land in a very cold or high altitude region that remains frozen year-round.
11. _______ tundra K. Plants with a thick, sometimes edible root, such as potatoes and sweet potatoes.
12. _______ quechua zone L. A beer made from corn, often used by Andean people in festivals and religious ceremonies.
13. _______ quinua M. A tropical plant with starchy roots used in making tapioca.
14. _______ coca N. Mountains.
15. _______ alpaca O. Rainforest.
16. _______ vertical economy P. A plant native to South America that contains a chemical that is a narcotic. Andean people chew the leaves to dull hunger pangs, provide energy and receive nutrients. It is grown and processed to make cocaine, a powerful illegal drug.
17. _______ charqui Q. Structures built in mountainous regions to create a flat surface to plant crops. Retaining walls are built on a slope and soil is placed between the wall and the mountain slope. They prevent soil erosion and prevent excessive runoff of rain.
18. _______ chuño R. Land above 10,000 feet in altitude.
19. _______ tubers S. Coast.
20. _______ manioc T. Containers and other objects made out of clay, also called pottery.
21. _______ chicha U. A system of canals and ditches that carries water to fields so that crops can grow.
22. _______ terraces V. A temperate zone in the Andes Mountains.
23. _______ ceramics W. A high-protein grain grown in the Andes.
VI. Appendices

B. Word Match

Reading Assignment 3

Complete the following word match after reading tomorrow's homework assignment, pages 11 to 13.

1. ______ oral history
2. ______ Sapa Inca
3. ______ Wiracocha Inca
4. ______ Inca Urcon
5. ______ Pachacuti (Inca Yapanqui)
6. ______ Topa Inca
7. ______ Huayna Capac
8. ______ Huascar
9. ______ Atahualpa
10. ______ Quechua
11. ______ smallpox
12. ______ immunity
13. ______ Francisco Pizarro
14. ______ Cajamarca
15. ______ plaza
16. ______ ransom
17. ______ puppet
18. ______ Thupa Amaru

A. A deadly infectious disease brought to the New World by Europeans.
B. A son of Wiracocha Inca who became Sapa Inca in 1438. He vastly expanded the Inca Empire through war and reorganized the Inca government.
C. The central square in a city or town. Usually important public buildings are grouped around the plaza.
D. Someone who is named ruler but is controlled by someone else. Thupa Wallpa was a puppet ruler appointed by the Spanish.
E. The Inca city where Pizarro and Atahualpa, the Inca emperor, met.
F. Payment made or demanded before a captive person is set free.
G. The body's ability to fight an infectious disease. Native Americans were very susceptible to European diseases such as smallpox because their bodies had not built up immunity to them by being exposed to the disease over time.
H. The language spoken by the Inca people. It was the official language of the Inca Empire and is still spoken today in the central Andean highlands.
I. Inca emperor who ruled after Pachacuti and expanded Inca territory in Ecuador, Bolivia, central Chile and parts of Argentina.
J. The first Inca emperor who expanded the Inca Empire beyond the Cuzco Valley. He was named after Wiracocha, the Inca god of creation.
K. He was captured by the Spanish conquistadores just before being installed as emperor and eventually murdered by the Spanish.
L. History that is not written down, but is handed down by one person telling others about events in the past.
M. He fought his brother in a bloody five-year civil war and was defeated just prior to the arrival of the Spanish conquistadores.
N. Spanish soldier who conquered the Inca Empire in 1532.
O. Wiracocha's son and chosen heir who fled Cuzco with his father during the Chanca war.
P. After extending the Inca Empire to its largest area, he died suddenly of smallpox.
Q. The title given to the Inca emperor, meaning “Ultimate Inca.”
R. The last Inca ruler to resist the Spanish, who killed him in 1572.
VI. Appendices

B. Word Match

Reading Assignment 4

Complete the following word match after reading tomorrow's homework assignment, pages 13 to 15.

1. ________ mita system
2. ________ ayllu
3. ________ hierarchy
4. ________ apu
5. ________ province
6. ________ curaca
7. ________ chasqui
8. ________ arid

A. An official who supervised from 100 to 10,000 households in the Inca Empire. He or she served under the provincial governor.
B. Political subdivisions similar to U.S. states.
C. Requirement that all male family heads work for a certain number of days for the Inca Empire. Duties included farming, serving in the army, textile weaving, building towns, terraces, irrigation systems and roads, working in mines, and carrying messages.
D. An organization of people arranged in higher and lower ranks. Each person takes orders from the person above him or her.
E. A lord or judge serving the Inca emperor.
F. A related group of families in Andean societies.
G. Very dry.
H. Messenger who relayed official messages.
Appendices
B. Word Match

Reading Assignment 5

Complete the following word match after reading tomorrow’s homework assignment, pages 15 to 17.

1. ________ quipu
 A. A person trained to read a quipu.

2. ________ bureaucrat
 B. A government official who carries out orders.

3. ________ abacus
 C. A method for adding and subtracting using rows of beads.

4. ________ quipucamayoc
 D. A device for recording numbers, and probably events, developed in South America and used extensively by the Inca emperor to gather information on the Inca Empire. It is a long horizontal string with shorter strings extending vertically along it. Knots on the strings stand for different numbers and units. Different colors probably stood for different things that were being counted.
Appendices

B. Word Match

Reading Assignment 6

Complete the following word match after reading tomorrow's homework assignment, pages 17 to 18.

1. _______ huaca
2. _______ Wiracocha
3. _______ deity
4. _______ mummy
5. _______ aqllakuna
6. _______ vicuña
7. _______ guanaco
8. _______ docile
9. _______ conopa

A. The “Chosen Women” who wove cloth and made chicha that was consumed in religious rituals.
B. The Inca god of creation.
C. A site considered sacred to the Incas, such as a mountain, lake, river or rock
D. A god.
E. A dead body preserved from decay, usually by wrapping in cloth.
F. Obedient, easy to control.
G. A wild animal of the Andean highlands related to the llama. Its wool is very fine. Only members of Inca royalty were allowed to wear clothing made of vicuña wool.
H. A small handmade object used in religious ceremonies by Andean people, often in the shape of llamas or other animals.
I. A wild South American animal similar in size and shape to the llama, thought to be the ancestor of llamas and alpacas.
Appendices
B. Word Match

Reading Assignment 7

Complete the following word match after reading tomorrow’s homework assignment, pages 18 to 20.

1. ________ bias
2. ________ Runasimi
3. ________ archaeologist
4. ________ anthropologist
5 ________ Qero
6. ________ Qoylluri Riti

A. A festival, still observed by Quechua-speaking people, where offerings to ancient gods believed to inhabit the landscape are made at mountain-top shrines. The shrines are dedicated to the Virgin Mary.

B. A social scientist who studies modern peoples and their cultures, customs and beliefs.

C. Opinions and values held by a person that influences the way he or she interprets other cultures.

D. A scientist who studies prehistoric human cultures, usually by examining physical remains such as buildings, pottery, tools and other objects.

E. A Quechua-speaking ethnic group living in the mountains about 55 miles from Cuzco who still practice agricultural and herding techniques used during the Inca Empire. They weave beautiful textiles from alpaca wool.

F. The Inca term for their language, meaning “human language.”
Appendices

C. Connections to Connecticut
Social Studies Framework Standards

This curriculum supports the following standards of the Social Studies Curriculum Framework for the state of Connecticut.

K-12 Content Standards

History

Historical Thinking: Students will develop historical thinking skills, including chronological thinking and recognizing change over time; contextualizing, comprehending and analyzing historical literature; researching historical sources; understanding the concept of historical causation; understanding competing narratives and interpretation; and constructing narratives and interpretation.

Historical Themes: Students will apply their understanding of historical periods, issues and trends to examine such historical themes as ideals, beliefs and institutions; conflict and conflict resolution; human movement and interaction; and science and technology in order to understand how the world came to be the way it is.

Content Standard 2: World History

Educational experiences in Grades K–12 will assure that students use historical thinking skills to study the following periodization with escalating scale of breadth and depth:

World History

...intensified hemispheric interactions [AD 1000–1500];

emergence of the first global age [AD 1450–1770]...

Geography

Places and regions

Students will use spatial perspective to identify and analyze the significance of physical and cultural characteristics of places and world regions.

Physical systems

Students will use spatial perspective to explain the physical processes that shape the Earth's surface and its ecosystems.

Human systems

Students will interpret spatial patterns of human migration, economic activities and political units in...the world.

Human and environmental interaction

Students will use geographic tools and technology to explain the interactions of humans and the larger environment, and the evolving consequences of those interactions.
Economics

Economic interdependence

Students will demonstrate how the exchange of goods and services by individuals, groups and nations creates economic interdependence and change.

K–12 Performance Standards

Educational experiences in Grades 5 to 8 will assure that students:

— formulate historical questions based on primary and secondary sources, including documents, eyewitness accounts, letters and diaries, artifacts, real or simulated historical sites, charts, graphs, diagrams and written texts;

— gather information from multiple sources, including archives or electronic databases, to have experience with historical sources and to appreciate the need for multiple perspectives;

— distinguish between primary and secondary sources;

— interpret data in historical maps, photographs, artworks and other artifacts;

— examine data to determine the adequacy and sufficiency of evidence, point of view, historical context, bias, distortion and propaganda, and to distinguish fact from opinion;

— analyze data in order to see persons and events in their historical context, understand causal factors and appreciate change over time;

— examine current concepts, issues, events and themes from historical perspectives and identify principle conflicting ideas between competing narratives or interpretations of historical events; and

— develop written narratives and short interpretative essays, as well as other appropriate presentations from investigations of source materials.

Historical themes

Educational experiences in Grades 5 to 8 will assure that students:

— explain the origins of American religious diversity, showing knowledge of some of the beliefs of Native Americans and migrants to the new world and give examples of ways those beliefs have changed over time;

— explain how roles and status of people have differed and changed throughout history based on gender, age, class, racial and ethnic identity, wealth, and/or social position;

— describe examples of how societies throughout history have used various forms of visual arts, dance, theater, myths, literature and music to express their beliefs, sense of identity and philosophical ideas;

— explain reasons for conflict and ways conflicts have been resolved;

— identify and analyze the various causes and effects of movements of groups of people;

— explain how economic factors influenced historical events in...other regions of the world; and

— describe, explain and analyze the impact of the exchange of ideas on societies, politics, religion, etc.
Standard 4: Applying history
Educational experiences in Grades 5 to 8 will assure that students:
—initiate questions and hypotheses about historic events being studied;
—be active learners at cultural institutions such as museums and historical exhibitions;
—display empathy for people who have lived in the past.

Standard 9: Places and Regions
Educational experiences in Grades 5 to 8 will assure that students:
—describe human and natural characteristics of places and how they shape or place identity; describe the process and impact of regional change;
—examine ways in which regions are interconnected;
—identify and evaluate various perspectives associated with places and regions;
—explain and assess how culture affects perception of places and regions;
—demonstrate how personal knowledge and experiences influence an individual’s perception of places.

Standard 10: Physical Systems
Educational experiences in Grades 5 to 8 will assure that students:
—understand how concepts of physical geography can be applied to explain natural processes;
—understand and apply how natural processes influence the formation and location of resources;
—use basic climatic and other physical data to understand how natural processes shape environmental patterns; and
—explain local and world patterns of ecosystem distribution.

Standard 11: Human Systems
Educational experiences in Grades 5 to 8 will assure that students:
—explain the patterns and characteristics of human migrations at various levels;
—explain how patterns of international trade change technology, transportation and communication, and affect economic activities and human migration;
—identify processes that divide Earth’s surface into different political and economic units from local to international levels.

Standard 12: Human and Environment Interactions
Educational experiences in Grades 5 to 8 will assure that students:
—explain the essential features and functions of maps, globes, photographs, geographic models and satellite images;
—make maps, globes, models, charts and geographic databases;
—compare and contrast differences among…photographs…for solving geographic problems;
—use maps, globes, models, graphs, charts and databases to analyze distributions and patterns;
—describe human and natural characteristics of places and how they shape or place identity;
—demonstrate and explain ways that humans depend on, adapt to and alter the physical environment; and identify the ways ecosystems are transformed through physical and human activities, and can predict the consequences of these activities.

Standard 13: Limited Resources

Educational experiences in Grades 5 to 8 will assure that students:
—compare the resources used by various cultures, countries and/or regions throughout the world;
—explain that households, businesses, governments and societies face scarcity just as individuals do;
—illustrate how resources can be used in a variety of ways.

Standard 14: Economic Systems

Educational experiences in Grades 5 to 8 will assure that students:
—explain how different economic systems (traditional, market and command) use different means to produce, distribute and exchange goods and services;
—explain that all countries’ economies reflect a mix of market, command and traditional elements;
—identify governmental activities that affect the local, state, national and international economy;

Standard 15: Economic Interdependence

Educational experiences in Grades 5 to 8 will assure that students:
—explain how specialization leads to more efficient use of economic resources and economic growth.
Machu Picchu:
Unveiling the Mystery of the Incas

By Carol P. Merriman
Curriculum Specialist

Technical Advisors
Richard L. Burger, Ph.D.
Exhibition Co-curator

Lucy C. Salazar
Exhibition Co-curator

Marc Blosveren, Ph.D.
Science Supervisor
New Haven Public Schools

Department of Public Education
Peabody Museum of Natural History
Yale University
New Haven, Connecticut
This science curriculum is designed to accompany the exhibition *Machu Picchu: Unveiling the Mystery of the Incas*, held at the Peabody Museum of Natural History, Yale University, New Haven, Connecticut, from January 26 to May 4, 2003.

This material is based on work supported by the National Science Foundation under Grant No. ESI-0206268.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Special thanks to: Marjorie Drucker, Science Teacher, North Haven Middle School, and Brendan Cohen, student at Yale University, for reviewing drafts of the curriculum guides.

Written for the Yale Peabody Museum
Department of Public Education
http://www.peabody.yale.edu/education

By Carol P. Merriman, Curriculum Specialist

Technical Advisors:
Richard L. Burger, Ph.D.
Exhibition Co-curator

Lucy C. Salazar
Exhibition Co-curator

Marc Blosveren, Ph.D.
Science Supervisor
New Haven Public Schools

Published by
Peabody Museum of Natural History
Yale University
P.O. Box 208118
New Haven, CT 06520-8118 USA

http://www.peabody.yale.edu/

© 2003 Peabody Museum of Natural History, Yale University. All rights reserved.

This publication may not be reproduced, in whole or in part, for commercial purposes in any printed, electronic or other form without the written permission of the Peabody Museum of Natural History. Limited permission is granted to reproduce portions of this work for educational use in the context of classroom instruction only. Cover photograph: Yale University
Contents

I. To the Teacher 1

II. Lesson Plans: Astronomy 3
 A. The Sun 3
 1. Skywatchers
 Handout 1: The Coricancha 5
 2. Location, Location, Location 6
 3. Days and Seasons 7
 4. Solstices and Equinoxes 8
 5. How the Incas Used the Sun 10
 Handout 2: The Spanish Chronicles 11
 6. Thinking Like an Archaeoastronomer 13
 Handout 3: Think Like an Archaeoastronomer! 14
 7. Shadow Casting 15

 B. The Night Sky 17
 1. Stargazing 17
 2. The Changing Night Sky 19
 3. Star Movements 20
 4. The Sky Calendar 21
 5. The Milky Way 22
 Handout 4: Dark Cloud Constellations 24

III. Lesson Plans: Inca Builders 25
 1. Machu Picchu’s Challenging Site 25
 Handout 1: Contour Map of Machu Picchu 27
 2. Machu Picchu’s Water Supply 28
 Handout 2: Rainfall at Machu Picchu 31
 Handout 3: Water Quality of Machu Picchu’s Spring 32
 3. Terraces 33
 4. Architecture 35

IV. Lesson Plans: Adjusting to an Extreme Environment 39
 1. Are We Getting Shorter or Taller? 39
 2. Human Respiration 41
 3. Evolution or Acclimatization? 42
 Handout 1: Adjusting to an Extreme Environment 43
 4. The Effect of Altitude on Gas Diffusion 44
Handout 2: The Effect of High Altitude on Oxygen Intake 45
5. Nutrition: The Food Pyramid 47
6. The Andean Diet 48
 Handout 3: The Andean Highland Diet 50
7. Comparing the Nutritional Content of American and Andean Foods 53

Resources 55

V. Student Guide to *Machu Picchu: Unveiling the Mystery of the Incas* 57
VI. Teacher’s Key to Student Guide to *Machu Picchu: Unveiling the Mystery of the Incas* 71
VII. Background Article: “The Incas” 83
VIII. Glossary 93
IX. Recommended Books 96
X. Connections to National Science Education Standards 98
I. To the Teacher

This curriculum has been developed to deepen students’ understanding of the exhibition Machu Picchu: Unveiling the Mystery of the Incas. It is designed to be used in middle school science classes to enrich the study of:

1) astronomy and space science;
2) earth science and environmental studies; and
3) human biology and health.

Each guide in the curriculum includes several lesson plans, which can be used individually or in sequence.

If possible, visit the exhibition before you go there with your class. Check the sequence of exhibition rooms. (Because the exhibition is being held at several venues, rooms may be laid out slightly differently at different locations.) Determine which questions on the Student Guide (Section V) to the exhibition are most relevant to your subject.

The guides are designed to enhance students’ appreciation of how scientists make and test hypotheses. Each lesson begins with an inquiry question to focus student thinking.

Lesson plans include hands-on activities and optional enrichment activities that require more time and materials. Some lessons refer to kits that must be purchased in advance. (See Resources.) Unless indicated, the kits are not necessary to complete the activity.

A separate social studies curriculum is available at http://www.peabody.yale.edu/education/pages/topic.html#arch. If your school’s scheduling permits, consider working with social studies teachers to create an interdisciplinary project on Machu Picchu and the Inca Empire.

Note: Answers to questions are in brackets.
II. Lesson Plans: Astronomy

A. The Sun

Homework

A few days before the unit is introduced:
Have students spend 10 minutes looking at the night sky. If the sky is cloudy, have them repeat the exercise on a clear night.

The day before the unit is introduced:
Have students read the background article, “The Incas” (Section VII).

Lesson 1: Skywatchers

Objective
To encourage students to understand why the sky, including the sun, moon, stars and planets, was important to ancient people, including the Incas.

Inquiry question
Why was the sky important to ancient people? What beliefs did they have about the sun, moon, planets and stars?

Materials

Procedures
1. Introduction: Ask students how they felt when they viewed the sky last night. Have them imagine they are living hundreds or thousands of years ago. How might their ideas about the night sky be different?

2. Ask students to cite examples of what ancient people believed about the sky. [For example, the Egyptians worshipped the sun, the Greeks studied constellations and associated the planets with gods.]

3. Observe that many ancient people worshipped the sun, moon, and stars. Their religious leaders were “skywatchers” who studied the sun, moon and stars in the sky, interpreting their movements as “divine speech.” These skywatchers observed that the sun, moon, stars and planets move about the sky in regular, predictable ways. They believed that by carefully observing these movements, they could predict the future.

4. Explain that like many ancient peoples, the Incas worshipped the sun, moon and stars. Their most important god was Wiracocha, the creator of the earth. He could not be seen by humans. Next came Inti, the sun god, who was depicted on a golden disk with sun rays around the edge. Mama-Quilla, the moon mother, was Inti’s wife. Apu Illapa, the god of thunder, was believed to
give rain, so important in the dry Andean climate. The planet Venus, which is visible only at sunrise and sunset, was believed to be the sun’s page because it always went before or after him. The Pleiades, a star cluster, was worshipped because its appearance and disappearance in the night sky coincided with the planting and harvesting of crops in Cuzco.

5. Activity A (older grades): Distribute Handout 1: The Coricancha. The Coricancha, located in Cuzco, was the most important Inca temple. (The Coricancha is described in the introduction to the background article “The Incas,” Section VII). The diagram in Handout 1 identifies the celestial objects that were worshipped in the Coricancha. Ask students to identify elements of the sky shown in the diagram. [Starting in the upper left and going clockwise: the sun, a constellation, the moon, the evening star (Venus), the Southern Cross (a constellation), a cat (a dark cloud constellation), eyes (thought to be the Pleiades), lightning, a rainbow, the stars of summer, Venus (morning star), Orion.]

Activity B (younger grades): Read Miro in the Kingdom of the Sun, by Jane Kurtz. What does the story tell us about Inca beliefs concerning the sun, moon and stars? [The emperor was named the “Sun King,” people used constellations to guide them when they traveled, they observed the morning star (Venus), and believed the moon was the wife of the sun.] What else does the story teach us about Inca life?

6. Assessment: Have students write a paragraph contrasting our beliefs about the sun, moon and stars with those of the Incas.
Handout 1: The Coricancha

The Coricancha, called the Temple of the Sun by the Spanish, was the most important temple in the Inca Empire. Its outside walls were covered with gold plates. The wall facing east displayed a huge golden sun disk that glowed in the rising sun. Archaeologists believe that the Inca emperor and priests observed the sun from the Coricancha. The temple was dedicated to the heavenly bodies worshipped by the Incas, including the sun, the moon, Venus and the Pleiades. Individual rooms in the temple were dedicated to the moon, Venus and the stars. This diagram, drawn by the Spanish chronicler Joan Santa Cruz Pachacuti Yanqui, shows a wall of the Coricancha. How many heavenly objects can you find depicted in the drawing?
Lesson 2: Location, Location, Location

Objective
Students will understand how Peru’s location near the equator affects its seasons.

Inquiry question
How does Peru’s position on the globe affect its seasons?

Materials
A globe that tilts at 23.5 degrees, a flashlight. Optional: Order “Earth, Moon, and Stars,” a GEMS kit (see Kits listed under Resources on page 55). The kit contains a plastic globe on a tilted stand for each student, a light bulb, and moons. You can use the plastic globes and light bulb to allow each student to carry out the following activities.

Procedures
1. A quick review of the earth’s movement around the sun.
 a) Teacher demonstration: Remind students that the earth revolves around the sun in a 365.25-day cycle. The earth is tilted on its axis at an angle of 23.5 degrees.
 Ask students if they remember how warm the sun’s rays are on their skin on a bright summer afternoon. This is because the sun is shining directly overhead, and the rays are concentrated in a circle on your skin. In winter, the rays fall on the skin at an angle, and are spread out in an oval pattern.
 When a given hemisphere is tilted toward the sun, the rays are more concentrated. When the Southern Hemisphere is tilted toward the sun, the sun’s rays are more direct and it is summer (in December). (Demonstrate the Southern Hemisphere being tilted toward the sun.) When the Southern Hemisphere is tilted away from the sun, in June, the sun’s rays are less concentrated and it is winter there. (Move the globe to other side of the table, maintaining the 23.5 degree angle. The Southern Hemisphere will now be oriented away from the sun.) What season is it in South America? [winter]
 b) Have a student locate Peru on the globe. What is its latitude? [13 degrees south] What impact would Peru’s location near the equator have on its climate?
 Explain that because Peru is located near the equator, there is less temperature change between summer and winter than there is in our latitudes.
 Note: Students may assume that Peru would have a hot climate since it is so near the equator. Prompt them to realize that Peru’s high elevation creates a relatively cool climate.

2. Assessment: Have students draw a picture of the earth revolving around the sun at about a 23 degree angle. Ask them to draw rough outlines of North and South America on the earth. Have them indicate approximately where their town is located and where Peru is. Have them indicate which season it is in each hemisphere.
Lesson 3: Days and Seasons

Objective
To enable students to understand how a country’s position on the globe determines the variation in length of day and night throughout the year.

Inquiry question
Why are the days longer in summer than in winter?

Materials
A globe that tilts at a 23.5 degree angle, a bright light, string, adhesive tape.

Procedures
1. Teacher demonstration (with assistance from students):
 a) Place a globe that is tilted on its axis at 23.5 degrees on the edge of a large (preferably circular) table. Have a bright light in the center of the table. Place the globe in a position where the Southern Hemisphere is tilted toward the sun. What season is it there? [summer] When during the year does this occur in the Southern Hemisphere? [December] Dim the lights. Now take a string and have it run through Peru parallel to the equator. (Use adhesive tape to hold the string in place.) Pull the string around the globe and mark on the string where the shadow begins on each side of Peru.

 b) Now put the globe at the opposite side of the table, maintaining the same 23.5 degree angle. Rotate the globe on its axis so Peru is exposed to the light. This time the Southern Hemisphere will be tilted away from the sun. What season is it in the Southern Hemisphere now? [winter] Why? [The sun’s rays are more indirect.]

 c) Do the same exercise with the string. How much shorter is the string? Estimate how many fewer hours of sunlight Peru has in the winter than in the summer. (Hint: One 15 degree segment of longitude equals one hour; total longitude equals 360 degrees)

 d) Now do the same exercise for your latitude. Which location has the greater difference in length of day in summer versus winter? [our location] Why? [Because it is farther away from the equator.]

 e) Which parts of the world have the greatest difference in the length of the day between winter and summer? [extreme northern and southern latitudes] Why? [They are located farther from the equator.]
Lesson 4: Solstices and Equinoxes

A. Solstices

Objective
Students will understand why the sun’s path across the sky appears to change position and what a solstice is.

Inquiry question
What is a solstice? How can it be used as a calendar?

Materials
Paper plate, pencil, modeling clay.

Procedures
1. Introduction: The change in the earth’s orientation toward the sun during the course of a year alters the sun’s apparent position in the sky. You may have noticed that in the winter, the sun appears very low on the horizon and does not provide very much heat. In the summer, on the other hand, the sun is high overhead and its rays are very warm. The different paths the sun appears to take throughout the year mean that the sun rises and sets at different places on the horizon: in the summer it rises more to the north of due east, and in the winter more to the south of due east.

2. Explain that the word solstice means “stand still.” It is the point where the sun is either highest or lowest in the sky. These are the most extreme points along the sun’s journey. One solstice occurs on about June 21 and the other on about December 21. Ask students: What seasons begin on these dates in our hemisphere? [June 21: summer; December 21: winter] In the Southern Hemisphere? [June 21: winter; December 21: summer]

3. Explain that the Incas constructed pillars along the horizon to track the progress of the sunrise and sunset during the year. They used this device as a sort of calendar to indicate when to plant crops—when the sun rose behind a certain pillar, it was time to plant crops in that region. Students will learn later how the Incas used direct observation to predict the solstice (see Lesson 5).

B. Equinox

Objective
Students will understand what an equinox is and why the sun casts shadows at various latitudes.

Inquiry question
What is an equinox? Or, does the sun cast a shadow at the equator?
Procedures

1. **Introduction**: Ask students to brainstorm about what the word “equinox” means. [“equal night” in Latin]

2. **Teacher explanation**: What is the equinox? [It is the point at which the sun is halfway between the summer solstice and the winter solstice.] Ask students what dates that would be. [The equinoxes are halfway between December 21 and June 21, or March 21 and September 21.] Which seasons begin on these dates? [spring and fall]

 The equinox occurs twice each year when the sun is shining directly on the equator. At this point neither hemisphere is tilted toward or away from the sun. People living near the equator do not see a shadow at noon during the equinox. But people living far away from the equator still see a shadow even at noon because, due to the curvature of the earth, the sun's rays always strike the earth's surface at an angle there, and the sun is never directly overhead.

3. **Teacher demonstration**: Construct a simple sundial by sticking a pencil in modeling clay on a paper plate. Ask students if a shadow will be cast at noon. At noon, look to see if there is a shadow. [yes] Why? [Because at our latitude, the sun always strikes the earth at an angle, causing the sun to cast a shadow even at noon.] Would you get the same result if you lived on the equator? [No, the sun is more directly overhead so little shadow is cast. Therefore, only a slight shadow usually appears on the sundial at noon at the equator.]

4. Ask students when the sundial would cast no shadow on the equator. [at the equinox]

5. **Assessment**: Have students find the latitude of Quito, Ecuador. If they made a sundial in Quito, would there be a shadow cast at noon at the equinox? Have them write a paragraph explaining why or why not. [Quito lies on the equator, therefore the sundial would not cast a shadow at noon at the equinox.]
Lesson 5: How the Incas Used the Sun

Objective
Students will understand how the Incas used direct observation of the sun, moon, stars and planets as a calendar.

Inquiry question
Imagine that your culture does not have writing and therefore does not have a written calendar. How could you use the movements of the sun to keep track of the seasons?

Materials
Paper plate, Handout 2, The Spanish Chronicles.

Procedures
1. Introduction: Ask students to discuss how people have used the movements of the sun, moon and stars in the past. [Some cultures used sundials to tell time, navigators used stars to guide ships, North American Native Americans used the stars to guide them across featureless plains.]

2. Explain that, because they worshipped the sun, the Incas developed many rituals in its honor. Some of these rituals took place at the equinox or solstice. They observed the passage of the sun on the horizon and predicted equinoxes and solstices to determine when to celebrate these festivals.

3. Activity: Ask student to do Handout 2: The Spanish Chronicles. Have students read the accounts and fill in the blanks to identify which celestial event or process served as the basis of each ritual.

4. Assessment: (assign as homework) Have students write a three-paragraph essay contrasting how we use the sun with how the Incas used it.
Handout 2: The Spanish Chronicles

After the Spanish Conquest, several observers wrote descriptions of daily life in the former Inca Empire. These descriptions, written by priests, government officials and native Peruvians, are known as “The Spanish Chronicles.” Although they are sometimes inaccurate because observers did not always have a thorough understanding of what they observed, they are our best source about life in Inca times.

Here is what some of the Spanish chroniclers said about Inca astronomy:

Directions

Read the following description of Inca astronomy and tell what astronomical phenomenon the Inca astronomers were observing.

1. Felipe Guaman Poma de Ayala describes how horizon pillars and windows were used to observe the changing rays of the sun:

In the sowing of the crops, they follow the month, the day, the hour, and the point where the Sun moves; they watch the high hills in the morning, the brightness, and the rays that the Sun aims at the window; by this clock they sow and harvest each year in this domain.

[Answer: movement of the sun on the horizon]

2. Garcilaso de la Vega describes how the Incas observed shadows:

[T]hey had columns of richly worked stone, placed in the patios or plazas in front of the temples of the sun;...[T]he priests took care to look every day at the shadow that the column made. They had the columns in the center of a circle which was very large and took the whole width of the plaza or patio; in the middle of the circle they made a line from east to west with string, because of long experience they knew where to put each point. By the shadow that the column made on the line they saw that the ________________ was approaching; and when the shadow bisected the line, from where the Sun rose to where it set, and at noon the light of the Sun bathed the entire column all around without making a shadow on any part, they said that that day was the ________________.

[Answer: equinox]

3. Bernabe Cobo describes markers around Cuzco, including:

Chinchincalla, is a large hill where there were two markers; when the sun reached them, it was time to plant. ________________

[Answer: movement of the sun on the horizon]

Quiangalla is a hill which is on the Yucay road. On it were two markers or pillars which they regarded as indication that, when the Sun reached there, it was the beginning of the summer. ________________

[Answer: summer solstice]
4. An anonymous chronicler describes pillars used as *huacas* near Cuzco as follows:

Sucanca. It was a hill by way of which the water channel from Chinchero comes. On it there were two markers as an indication that when the Sun arrived there, they had to begin to plant the maize. The sacrifice that was made there was directed to the Sun, asking him to arrive there at a time which would be appropriate for planting, and they sacrificed to him sheep [llamas], clothing, and small miniature lambs [baby llamas] of gold and silver.

[Answer: movement of the sun on the horizon]

Lesson 6: Think Like an Archaeoastronomer

Objective

To introduce students to a device that the Inca astronomers might have used to determine when a solstice was about to occur.

Materials

Handout 3: Think Like an Archaeoastronomer!, a plumb bob (available at hardware stores), string.

Procedures

1. Introduction: Show students a plumb bob hung from a string. Ask them if they know how carpenters use a plumb bob today. [A plumb bob is used to mark a line that is exactly perpendicular to the ground.] Explain that at the exhibition Machu Picchu: Unveiling the Mystery of the Incas students will be learning about how Inca astronomers might have used a plumb bob for an entirely different purpose—to predict when the solstice would occur.

2. Activity: Explain that at the exhibition students will learn about how archaeologists study buildings to determine their purpose. Students can practice thinking like an archaeologist by doing Handout 3: Think Like an Archaeoastronomer! as a class before they visit the exhibition.
Handout 3: Think Like an Archaeoastronomer!

Imagine you are an archaeologist who is studying Machu Picchu. You are especially interested in a building next to the emperor’s residence called the Torreón. You want to determine what it was used for. Here are some clues:

1. It is made of beautifully shaped stones that have been polished.
2. It has an unusual curved wall.
3. A platform connects the building with an adjacent house where priests lived.
4. There is a beautifully crafted stone in the middle of the room that includes a carving of a cat. On a few mornings each year, sunlight enters the east-facing window to illuminate the stone.
5. On the exterior of the east-facing window are pegs that could have held a rod.

Brainstorm as a class about what the Torreón was used for. When you visit the exhibition, listen carefully to the Curator’s Tour. Lucy Salazar will explain what archaeologists think the Torreón was used for. Also view the video on archaeoastronomy. It will show the Torreón and explain its special features.

At the exhibition

Have students complete the Student Guide to *Machu Picchu: Unveiling the Mystery of the Incas* (Section V) as they view the exhibition. Explain that they will be seeing a video on archaeoastronomy and should be sure to answer all the questions on the handout pertaining to the video. (Students may want to view the video more than once.)
Lesson 7: Shadow Casting

Objective

Students will understand how changes in the shadow cast by the sun can be used to determine when the solstice occurs.

Inquiry question

How did the Incas make a calendar to schedule public festivals in the absence of a written language?

Procedures

1. **Introduction**: Observe that the Incas did not have writing or scientific instruments for measurement. Ask students to think about how the Incas used direct observation of the sun to create a calendar of important events.

2. **Discussion**: Have students refer to the Student Guide (Section V) they filled out at the exhibition.

 a) What buildings at Machu Picchu were used as observatories? [Torreón, Intimachay]

 b) Why do archaeologists think the Torreón was used as a religious temple?

 Explanation of Handout 3: Think Like an Archaeoastronomer!

 Archaeologists believe that the Torreón was a temple, in part because it is similar in many ways to the Temple of the Sun in Cuzco. The Torreón has an unusual (and difficult to construct) curved stone wall. The other stone walls are exquisitely crafted. The fact that the building was connected to the priests’ house meant that priests could easily enter the building to perform ceremonies. The platform that connected the Torreón to the priests’ house may have been used for religious ceremonies.

 c) Discuss why some archaeologists think the Torreón was used as a solar observatory. (Have students refer to their answers to the questions in the Student Guide about the archaeoastronomy video.)

 Some archaeologists also believe that the Torreón was used as a solar observatory to observe the June (winter) solstice. The room contains a stone altar and a carving of a cat with a raised edge on its belly. The Torreón has east-facing windows through which morning sunlight passes. Archaeologists believe that the pegs on the outside of the window were used to support a rod. If a plumb bob is suspended from the rod on a cord, the window projects a shadow on the altar. Each day the shadow moves slightly as the angle of the sunrise changes in the sky. During the period before the winter solstice, the shadow nears alignment with the raised edge on the belly of the cat. On the day of the winter solstice, the shadow falls exactly along the raised edge of the cat’s belly.

 Archaeoastronomers believe that Inca skywatchers, called **yancas**, could predict the arrival of the winter solstice by observing the shadow's position as it approached the raised edge of the cat's belly. These observations were used to determine when to celebrate the important Inca festival of Inti Raymi.
Archaeologists think that the silver plumb bob displayed in the exhibition may have been used to mark the June solstice. The fact that it is solid silver might indicate that it was used in a religious ceremony. Compare this use of a plumb bob to the way carpenters use it today.

3. Assessment: Ask students to write a two- to three-paragraph essay on the following topic:

How did the Incas make scientific observations of the sun and stars to keep track of the passage of time? Describe techniques they used to predict: a) when to plant crops, b) when a solstice was approaching, and c) when an equinox was occurring. Draw diagrams to illustrate each explanation. (Display the globe tilted at a 23 degree angle to help students visualize their explanations.)
B. The Night Sky

Homework

A few days before the unit is introduced:

Have students spend 10 minutes looking at the night sky. If the sky is cloudy, have them repeat the exercise on a clear night.

The day before the unit is introduced:

Have students read the background article “The Incas” (Section VII).

Lesson 1: Stargazing

Objective

Students will use sky charts to understand why people in the Southern Hemisphere see different constellations than people in the Northern Hemisphere.

Inquiry question

Do people in Peru see the same stars and constellations as we do?

Materials

An atlas, Internet access.

Procedures

1. **Introduction:** Explain that for thousands of years people have looked at the sky and seen patterns in the stars. These patterns are called constellations. The stars appear to move across the night sky due to the earth’s rotation and revolution around the sun. The position of a given constellation appears to rise and set on the horizon at a slightly different point each night and some drop below the horizon for a period of weeks during the year. These movements all occur in a regular, predictable manner.

2. People have made charts of the night sky to record the position of the constellations and to predict future locations of the constellations. As a result of computer technology, you can now see a chart of what the sky looked like from any point on the earth at a given time hundreds of years ago.

3. **Activity:** Go to a good atlas and find the longitude and latitude of Machu Picchu. Be sure to record whether the position is east or west, north or south. [13 degrees S, 73 degrees W]

4. Now find the latitude and longitude of your town. [For example, New Haven, CT is 41 degrees N, 73 degrees W.]
5. On the Internet, find the website “Your Sky” (http://www.fourmilab.ch/yoursky/). Plug in the coordinates for Machu Picchu. You will get a picture of what the night sky looks like from Machu Picchu today. Print out the sky chart. Now update the sky chart, using your own town’s latitude and longitude. Print out the sky chart. Label each chart for easier reference.

6. Familiarize yourself with the sky chart. Find a few constellations you recognize. What is the red band with familiar constellations along it? [the path of the zodiac]

7. Examine the two charts and find five constellations that are on both charts. Now find five on each chart that are NOT on the other. In general, where do the two charts overlap? [in the middle] Where are they different? [on the edges]

8. Now we can answer the question: Does the night sky look the same in your town as in Machu Picchu? Why is this so? [The sky looks somewhat different due to the different positions on globe—one is in the Northern Hemisphere, the other in the Southern Hemisphere.]

9. What accounts for the significant overlap in the two charts? (Think about the geographic position of the two locations.) [Peru and North America (especially the East Coast) are at about the same longitude.]
Lesson 2: The Changing Night Sky

Objective

Students will understand how the night sky looks different in Peru than in their town.

Inquiry question

Does the night sky in Peru look the same as it does in your town?

Materials

Record player, two phonograph records.

Procedures

A few days before you begin the unit:

Ask students to go outside or look out a window after dark tonight. They should write down the time. Ask them to find one bright star or constellation on the horizon near a landmark such as a building or tree. Now have them wait two hours and look for the same star. Is it still visible? Has it moved? Have them repeat this process for two more nights.

1. Introduction: Discuss the results of the star observation. Explain that students will be learning why stars appear to move in the sky.

2. Teacher demonstration: To better understand why stars appear to be moving across the night sky, do this demonstration with a record player and two phonograph records. Put one record on the turntable. This represents the earth. Slowly turn the record counterclockwise to show how the earth spins from west to east as it rotates on its axis over a 24-hour period. Now put another record on the spindle and hold it above the first record. Put a sticky star on the edge of the top record. Ask a student to move the bottom record as done previously. Have students imagine they are standing on the bottom record looking up. How does the star appear to move? [from east to west] Explain that in both hemispheres, the stars appear to be moving from east to west when facing north.

3. Homework: Have students do research on the Internet or in the library on the difference between a star cluster and a constellation.
Lesson 3: Star Movements

Objective

Students will understand why the stars appear to move across the sky.

Inquiry question

Why do the stars appear to move across the night sky?

Materials

Three large umbrellas, star stickers.

Procedures

1. Introduction: Observe that students have learned that the stars appear to move across the sky due to the Earth’s rotation around its axis. Depending on their position in the sky, individual stars and constellations sometimes appear to rise and set on the horizon just as the sun does. The place on the horizon where the star rises and sets changes throughout the year in a predictable pattern. Many constellations drop below the horizon for several weeks during the year.

2. Activity: Umbrella exercise
 a) Divide the class into three groups. Assign one of the following constellations or star clusters to each group: the Southern Cross, the Pleiades, and the Big Dipper. Have the groups conduct research on their assigned topic. Each group should make a drawing of their constellation or star cluster and write a brief report as to why it is important. How many stars does it have? What myths are associated with it? Was it used for a specific purpose in the past?
 b) Now have each group depict the pattern of its constellation or star cluster by putting sticky stars on the inside edge of a black umbrella. (Make umbrella A the Big Dipper and North Star, umbrella B the Pleiades, umbrella C the Southern Cross.)
 c) Position one person in a chair in the middle of the room. Have another student hold umbrella A overhead, another hold umbrella B to the side, and a third hold umbrella C near the ground. Have the person in the chair look straight ahead. He or she can see A and B but can’t see C. This is the view of the sky from the middle latitudes of the Northern Hemisphere. Now reverse umbrellas A and C. This is the view from the middle latitudes of the Southern Hemisphere. He or she can see B and C, but not A. (A person on the equator can see all three through the period of one year.)
 d) Now have a student place umbrella B on a table, with the handle flat on the table and the umbrella hanging over the edge. Have the student rotate the umbrella slowly so that the constellation rises, moves across the sky, and drops below the horizon.

3. Assessment: (assign as homework) Ask students to write a paragraph answering the following question: How could you use the rising and setting of the stars to make a sky calendar?
Lesson 4: The Sky Calendar

Objective

Students will understand how the Incas used the constellations as a calendar to regulate the planting and harvesting of crops.

Inquiry question

How did the Incas use the constellations as a sky calendar to indicate when to plant and harvest crops?

Materials

Handout 1: The Coricancha.

Procedures

1. Have students refer to Handout 1: The Coricancha. Ask them what the Coricancha was. [the most sacred temple of the Inca religion]

2. Discussion: Locate the “Stars of Summer.” This was the Inca name for the Pleiades, a star cluster visible in both the Northern and the Southern Hemispheres. How many stars are shown in the drawing? [13] How many of the Pleiades stars are visible to us? [6] Why do you think the Incas could see more stars than we can? (Hint: Think about their geographic location.) [Peru’s highland atmosphere is less dense due to high altitude, so there is less distortion of light waves entering earth’s atmosphere. The dry climate also makes stars more easily visible.]

There is a reason the Incas observed the Pleiades with special interest. People realized that the reappearance of the constellation in the eastern sky occurred when it was time to plant crops in the Cuzco region. Its disappearance below the horizon coincided with the beginning of the harvest season. The constellation disappeared for 37 days. This was the so-called “dead” period between the harvest and planting season. The Inca calendar did not record this period. When the Pleiades appeared again it was time to plant the next crop. So, people living in the Cuzco region observed the rising and setting of the Pleiades to know when to plant and harvest their crops. It is perhaps for this reason that the Incas came to worship the constellation and refer to it as collca (storehouse).

3. Assessment: Have students write a story explaining how someone used a constellation to anticipate an important seasonal event.
Lesson 5: The Milky Way

Objective

Students will understand how the Incas used their observation of the Milky Way in their myths and religious beliefs.

Inquiry question

Does the Milky Way look different in the Andes?

Materials

Homework

Before you begin the unit:

Have students do research and write a paragraph on the Milky Way. Do Internet research to find photographs of the Milky Way as seen from the Southern and Northern Hemispheres. (See, for example, NASA’s Astronomy Picture of the Day web site by doing a search for “NASA Astronomy Picture of the Day.” Then search the archive for images of the Milky Way as seen from the Northern and Southern Hemispheres.)

Procedures

1. *Introduction:* Explain that the Milky Way looks different in the Southern Hemisphere than it appears to us in the Northern Hemisphere. Because people living in the Southern Hemisphere are looking more toward the center of the galaxy, the Milky Way looks much denser to them, with pronounced black spaces. In Peru, the Milky Way looks like a huge white path across the night sky. The Inca people thought of it as a celestial road or river.

2. Explain that Andean skywatchers observed the Milky Way and saw the outlines of animals in the dark areas. These “dark cloud constellations” appear and disappear throughout the year just as regular constellations do. The Andean skywatchers identified the dark cloud constellations they saw in the Milky Way with animals that were important to them. These constellations were paired with animals whose birthing cycles corresponded with the appearance and disappearance of the dark cloud constellations in the night sky. For example, the dark cloud constellation representing the llama appeared in December. The breeding period for llamas begins in late December and the animals give birth 11 months later. Two stars, called the eyes of the llama, rise on the horizon during the birthing season.

3. Explain that the Milky Way was also viewed as a river by the Andean people. The Incas believed that the Milky Way was the shadow of the god Apu Illapu, the rain giver. Temples to the rain god were usually in the mountains, where rain clouds often form. The Incas believed that Apu Illapu took rainwater from the Milky Way.

4. *Activity A* (older students): Have students name the blank spaces in the “Milky Way Band” image from NASA (see above) after an animal or other object in their daily life. OR:
Distribute Handout 4: Dark Cloud Constellations. Have students match dark cloud constellations with animals associated with them by Andean people.

Activity B (younger age groups): Read *Miro in the Kingdom of the Sun* by Jane Kurtz. Questions for discussion: What can you learn about life during Inca times from the story? How is the Incas' interest in objects found in the sky reflected in the story? [The king was named the Sun King; Miro is comforted by the moon, who is believed to be the wife of the sun.] What animal characters in the story are also part of the Andean view of the Milky Way? [llama and baby, boa constrictor (serpent)]

5. **Assessment:** (assign as homework) Have students write a three-part essay on how the Incas used observation of the sky to create a calendar. The essay should include a discussion of the sun, the Pleiades, and the Milky Way. Students should include an explanation of the astronomical phenomena underlying each observation. Optional: Have students draw diagrams to illustrate at least one observation.
Handout 4: Dark Cloud Constellations

(labeled images A, B, C, D, E, F, G)

___ toad

___ fox

___ snake

___ partridge

___ partridge

___ llama

___ baby llama

Teacher’s Key: A, partridge; B, fox; C, llama; D, baby llama; E, partridge; F, toad; G, snake.
III. Lesson Plans: Inca Builders

Note: This unit is designed to be used after visiting the exhibition.

Before visiting the exhibition:

1. Order a free archaeological map of Machu Picchu (see Materials below).
2. Have students read the background article “The Incas” (Section VII).

View the exhibition Machu Picchu: Unveiling the Mystery of the Incas. Have students fill out the Student Guide (Section V) as they view the exhibition.

Lesson 1: Machu Picchu’s Challenging Site

Objective

Students will examine the problems Inca engineers faced in building a royal retreat at Machu Picchu’s site.

Inquiry question

How were Inca builders able to overcome the obstacles posed by Machu Picchu’s challenging location to build a complex of buildings that has remained almost completely intact for over 500 years?

Materials

Archaeological map of Machu Picchu (order a free copy from: Wright Water Engineers, 2490 West 26th Avenue, Suite 10-A, Denver, CO 80211; phone 303-480-1700), Handout 1: Contour Map of Machu Picchu.

Procedures

1. Introduction: Write on the board: “The Incas were good engineers.” Explain that Hiram Bingham made this statement in an article he published in 1913 in National Geographic. Ask students if they agree with Bingham’s statement. Have them cite examples of Inca engineering they saw in the exhibition Machu Picchu: Unveiling the Mystery of the Incas. [buildings, canal, terraces, roads, overcoming obstacles posed by remote site on top of mountain]

2. Discuss Machu Picchu’s site. (Have students refer to the Curator’s Tour section of the Student Guide they filled out during their visit to the exhibition.) What engineering challenges did Inca builders face due to Machu Picchu’s setting? [remote location, steep slopes, high elevation, river acts as barrier, where to obtain water, lack of soil for agriculture]
3. Activity: Working with a contour map

a) Post the archaeological map of Machu Picchu on the bulletin board for reference.

b) Pass out Handout 1: Contour Map of Machu Picchu. Explain the purpose of a contour map. [to show physical features like mountains and valleys on a flat surface] Each curved line represents 50 meters of elevation. Have students orient themselves by locating the river (lowest elevation) and tracing the Hiram Bingham Highway as it twists up the mountain to Machu Picchu.

c) Ask students to identify important geological features on the map. [river, mountains (name them—how high is each?)] Ask students what a fault line is. What does the presence of two fault lines mean for builders? [likelihood of earthquakes—need to make buildings strong enough to withstand earthquakes; risk of landslides, especially in mountainous area]

d) Explain to students that Machu Picchu’s location in an earthquake-prone area was in one way an advantage to builders—repeated earthquakes produced rock fractures that caused landslides and rock falls that created blocks of granite of all sizes. The Inca builders were lucky to have these building blocks on site.

e) What man-made structures are shown on the map? [Machu Picchu, the Inca Trail, railroad (The Inca Trail was there when Hiram Bingham visited, the railroad was not.)]

4. Assessment: (assign as homework) Have students write a three-paragraph essay on the following topic: Based on what you learned in the background article, your visit to the exhibition, and study of the contour map, why do you think the Incas chose this location to build Machu Picchu?

Possible responses:

a) The Incas considered water and mountains to be sacred (huacas). Machu Picchu is surrounded on three sides by water (river) and has a view of three sacred mountains.

b) Machu Picchu was relatively close to Cuzco, but had a better climate (drier, warmer than Cuzco in winter).

c) The site was easily defended (has sheer cliffs on three sides).

d) A spring was available for water.

e) Many large building blocks that had been produced by recurring earthquakes were already on site.
Handout 1: Contour Map of Machu Picchu

Lesson 2: Machu Picchu’s Water Supply

Objective

Students will determine whether Inca engineers were able to provide sufficient water to the site’s residents.

Inquiry question

Where did the residents of Machu Picchu get their water?

Materials

Handout 1: Contour Map of Machu Picchu, Handout 2: Rainfall at Machu Picchu, sink with a faucet, gallon milk containers.

Procedures

1. Introduction: Where did residents of Machu Picchu get their water? Ruth Wright, a lawyer and photographer who has studied Machu Picchu extensively, asked this question in 1974. She and her husband, Kenneth Wright, spent the next two decades answering this question. Her husband was well qualified to study the problem—he is a civil engineer with a company that specializes in hydrology, the study of water flow. The Wrights have spent many years exploring Machu Picchu and have written several books about the site (see Sources in Section VII).

2. Activity

a) Contour map

i) On Handout 1: Contour Map of Machu Picchu have students locate two geological features that could provide a source of water for Machu Picchu. [spring, river] What is shown leading away from the spring? [a domestic water supply canal]

ii) Explain that earthquakes created conditions favorable to the creation of a spring. Fractures caused by earthquakes make the rocks more permeable to water. Rainfall infiltrates the rocks and percolates down until it emerges from other rock fractures as a spring.

iii) Have a student trace the canal on the archaeological map of Machu Picchu. Where did excess water drain? [the main drain]

iv) Discuss the 16 fountains. What was their purpose? [They provided drinking water, and may have also had a ceremonial purpose.]

b) Measuring water flow

i) Explain that students will be analyzing whether Machu Picchu’s water supply was sufficient to provide for the needs of everyone when the emperor and his attendants were in residence.

ii) Have students measure flow from a faucet by running the water for 30 seconds at full blast into one-gallon plastic milk containers. Estimate the amount of water in the containers. Multiply by 2. This equals water flow per minute from the faucet.

iii) Have students study Table 1 in Handout 2: Rainfall at Machu Picchu. This table compares
monthly rainfall at Machu Picchu (in millimeters) to the amount of water flowing from the
spring (in liters). What can you say about the relationship between rainfall and water flow
from the spring? [The amount of rain did influence the amount of water flowing from the
spring, but there was a time lag between when the amount of rain declined and when the
amount of water from the spring declined.] Which four months had the greatest amount of

iv) Remind students that the Inca emperor and his attendants were in residence at Machu
Picchu during their winter (June to September). How much water was available from the
spring then? [23 to 85 liters per minute]

v) Archaeologists believe that about 300 people were permanent residents of Machu Picchu.
Kenneth Wright estimates that in order to meet the drinking water needs of 300 residents,
water flow from the spring would need to be at least 10 liters per minute. According to the
table, would the spring have provided sufficient water during the months when the emperor
was not in residence (October to May)? [yes]

vi) Archaeologists think that about 600 people lived at Machu Picchu when the emperor and
his relatives, friends and servants were in residence. Ask students to calculate how much water
would be required when the emperor and his attendants were at Machu Picchu. [Divide 600
by 300, which equals 2. They would need 2 times as much water, or 20 liters per minute.]

vii) Would water flow from the spring be sufficient during all the months when the emperor
was in residence (June to September)? [In normal years, rainfall would have been sufficient. But
residents might have experienced a water shortage in September during periods of drought.]

viii) Return to Handout 1: Contour Map of Machu Picchu. Where else might residents have
obtained water? [the Urubamba River]

ix) Ask students what objects in the exhibition could have been used to carry water. [large
pottery jars called aryballos] Who usually carried water? [women]

x) Estimate the amount of water a large aryballo would hold. Divide the class into groups of
four students. Give each group a one-gallon plastic milk container and ask a student in each
group to empty his or her backpack. Have each group fill their milk container with water.
Have students take turns carrying the water in the backpack. Note: Inca women would have
carried the water up a 1,640-foot path that went almost straight up!

c) Drainage

Inca builders also had to build structures to carry away excess water. This was especially
important because Machu Picchu has periods of heavy rainfall between October and April (refer
to Handout 2, Table 1, “Monthly Rainfall and Spring Flow”). The second table in Handout 2,
“Urban Surface Runoff for Typical Wall Drainage Outlets,” shows how a modern-day civil engi-
near would calculate the size and capacity of drains necessary to handle excess rainwater. The
Incas created an efficient system for water drainage using only a quipu and a counting tray!

Enrichment

Materials

Neo/SCI kit “Investigating Water Pollutants and Water Analysis” (see Kits under Resources), Hand-
out 3: Water Quality of Machu Picchu’s Spring.
Inquiry question

Which type of water is purer, standing water or running water?

1. Using the Neo/SCI kit, have students analyze the water quality of their local water supply. Have them record their data on the chart provided in Activity 7 of the kit. Then have them test water samples from a local river (running water) and a local pond or lake (standing water).

2. Have students add information to their chart about the quality of water from Machu Picchu's spring (provided on Handout 3).

3. Which water source supplies the purest water? The least pure water? Why?

4. Assessment: Have students write a paragraph comparing the water quality at Machu Picchu with one of the standing water sources they analyzed. Which type of water is purer, standing water or running water?
Handout 2: Rainfall at Machu Picchu

Table 1: Monthly Rainfall and Spring Flow

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>95</td>
</tr>
<tr>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>125</td>
</tr>
<tr>
<td>May</td>
<td>95</td>
</tr>
<tr>
<td>Jun</td>
<td>76</td>
</tr>
<tr>
<td>Jul</td>
<td>38</td>
</tr>
<tr>
<td>Aug</td>
<td>23</td>
</tr>
<tr>
<td>Sep</td>
<td>26</td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from Machu Picchu: A Civil Engineering Marvel, by Kenneth R. Wright and Alfredo Valencia Zegarra, p. 30. Copyright 2000 ASCE Press, Reston, VA. Reproduced with the permission of ASCE.

Table 2: Urban Surface Runoff for Typical Wall Drainage Outlets

<table>
<thead>
<tr>
<th>Primary</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary area per drainage outlet</td>
<td>200 square meters</td>
</tr>
<tr>
<td>Drainage outlet size, typical</td>
<td>10 cm by 13 cm</td>
</tr>
<tr>
<td>Drainage outlet capacity, maximum</td>
<td>650 liters per minute</td>
</tr>
<tr>
<td>Design rainfall intensity</td>
<td>200 millimeters per hour</td>
</tr>
<tr>
<td>Design flow per drainage outlet</td>
<td>500 liters per minute</td>
</tr>
</tbody>
</table>

Source: Adapted from Machu Picchu: A Civil Engineering Marvel, by Kenneth R. Wright and Alfredo Valencia Zegarra, p. 30. Copyright 2000 ASCE Press, Reston, VA. Reproduced with the permission of ASCE.
Handout 3: Water Quality of Machu Picchu’s Spring

<table>
<thead>
<tr>
<th>January 1996 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganics</td>
</tr>
<tr>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>Total alkalinity</td>
</tr>
<tr>
<td>Ammonia</td>
</tr>
<tr>
<td>Chloride</td>
</tr>
<tr>
<td>Sulfur</td>
</tr>
<tr>
<td>Dissolved metals</td>
</tr>
<tr>
<td>Manganese</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Total metals</td>
</tr>
<tr>
<td>Manganese</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
</tbody>
</table>

Field measurements: July 1995

- Water temperature: 16.0 degrees C
- Conductivity: 35.0
- pH: 6.45

Lesson 3: Terraces

Objective
Students will understand how terraces are built to absorb water and prevent erosion.

Inquiry question
Why did the Incas build terraces?

Note to the teacher: If you do not have sufficient time or materials to have students build a model terrace, refer to the Shortcut Activity that describes a simpler terrace-building activity. If you choose the shorter activity, do not refer to terraces as a method of retaining water until the students have completed the activity. Then have the class discuss the questions listed under Procedures, 2 through 6.

Activity: Build a Terrace

Materials
Small stones, gravel, sand, soil, Duplos or other large plastic building blocks, large poster boards with a plasticized surface (one per group), measuring cups, plastic drinking straws, large plastic tubs to collect water.

Procedures

1. Introduction: Ask students to recall the terraces they saw in the model and photographs at the exhibition. How were they made? Ask a volunteer to sketch them on the board.

2. Have students get information from the Internet on the average monthly rainfall in their region. Have them plot average monthly rainfall in their region on Handout 2, Table 1, "Monthly Rainfall and Spring Flow." (Note: Students may have to convert inches of rainfall to millimeters.) How does rainfall in Machu Picchu compare to rainfall in your area? Encourage students to understand that Machu Picchu receives a lot of rainfall, and that the amount varies greatly between the dry and wet seasons.

3. Ask students to think about what problems large amounts of rain would create in a mountainous setting. [Steep slopes would create rapid water runoff during rains, causing soil erosion and landslides.]

4. Ask students how building terraces would prevent water runoff and soil erosion. [Terraces create flat surfaces that allow rainwater to be absorbed into the ground. They also channel water runoff to reduce erosion.]

5. Explain that one reason terraces were especially important at Machu Picchu was that the Incas grew corn there to make chicha beer. Because corn has thin, fragile stalks, it grows best in flat fields like
those of the American Midwest. What would happen if corn was planted on a steep slope? [The fragile stalks would break easily in a heavy rainstorm.]

6. Ask students who built the terraces at Machu Picchu. (refer to background article “The Incas,” Section VII) [mita workers]

7. Explain to students that they will be dividing into teams to build an agricultural terrace similar to those at Machu Picchu. Their goal is to build a terrace that will absorb the most water and have the least amount of soil erosion.

8. Divide the class into teams. Tell them that they will have two class periods to design and build a terrace. Their goal is to create a structure that absorbs the most water. The team that builds a terrace that retains the most water wins. Teams will also be scored on how effective their structure is in holding up the straws (stalks of corn). The team with the highest number of straws that wash away loses.

9. Each terrace is to be slanted at a 45-degree angle. Have students prop the poster board on a chair or low table to create a 45-degree angle. The lower end of the poster board should be in the plastic tub that will catch water when it is poured over the terrace.

10. Allow time for teams to design and construct their terraces.

11. During the last 15 minutes of the second class period, have students take turns pouring water down their terrace (slowly, one cup at a time). Each group should measure the water runoff from their terrace. Which group’s terrace had the least runoff? The most straws left standing? They are the winners of the terrace construction contest.

Shortcut Activity

If you choose this activity, do it at the beginning of the lesson before your discussion of terracing.

Materials

Heavy-duty aluminum foil, plasticized poster board, cotton balls, large tub.

Procedures

1. Challenge students to build a structure on a sloping surface that will absorb the most water possible.

2. Divide the class into teams of four. Give them the plasticized poster board, heavy-duty aluminum foil and cotton balls. Tell them that they are to devise a structure that will absorb the most water possible when the poster board is positioned at a 45-degree angle.

3. During the last 15 minutes of class, have students take turns pouring water down their structure (slowly, one cup at a time). Each group should measure the water runoff from their terrace. Which group’s terrace had the least runoff?

4. **Closure:** Ask students what structure they saw in the exhibition that served the same function as their structure. [terraces]
Lesson 4: Architecture

Objective

Students will learn how Inca architecture was adapted to the extreme environment of the Andean highlands.

Materials

Secrets of Lost Empires: Inca (video), available from WGBH, Boston (cost $19.95), cotton, wool fibers, llama, alpaca fibers (if available).

Procedures

1. Introduction: Show the video Secrets of Lost Empires: Inca. Ask students what they learned from the video about how Inca building techniques created strong, earthquake-proof buildings. [They used huge rectangular stones, made tight joints, and created very strong walls.]

2. Ask students what tools the Incas used to shape stones. [stone hammers] To move stones? [a lever, small stones]

3. Activity: Challenge students to design a simple house using the materials available to Inca builders (stone or adobe, thatch; wood is scarce in the Andean highlands). The design is to take into account environmental conditions prevalent in the Andean highlands (marked changes in temperatures between day and night) and take advantage of geographic conditions (high elevation creates strong solar heat) to provide warmth.

4. Have students do research on the Internet to find out how much average daily temperature varies in Cuzco. Have students make a graph showing the average high and low temperatures by month for Cuzco. [Daily temperatures vary by about 20 degrees F in the summer and 30 degrees F in the winter.]

5. Challenge students to design a house for an Andean family, given what they know about the environmental conditions in the Andean highlands and the building materials available there. Encourage them to think about how to ensure warmth in the cool highland climate.

6. Explanation (discuss after students have designed their houses): [Temperatures in the Andean highlands vary greatly each day—between 20 and 30 degrees F. The sun’s rays are very strong during the day, and can heat up stone or adobe surfaces considerably. Andean houses are made of adobe and generally consist of one small windowless room with an open door oriented toward the sun. The roof is generally of thatch. A fire may be lit to cook food. The intense sunlight heating the adobe increases the interior temperature by about 18 degrees F during the day. The temperature gradually decreases during the night. At night, people use heavy blankets and the whole family often sleeps in the same bed to increase warmth.]

7. Under the microscope: Have students examine wool and cotton fibers under the microscope. If possible, get llama or alpaca wool and examine it under the microscope. Does the structure of the wool suggest that it would be a better insulator than cotton?
Enrichment Activity

Objective

Students will learn about the greenhouse effect by comparing the temperature in model houses with windows to those without windows.

Materials

"Hot Water and Warm Homes from Sunlight," a GEMS kit (see Kits under Resources).

Procedures

1. Divide the class into groups of four students. Distribute a GEMS kit to each group. Explain that the class will be learning about the greenhouse effect by comparing houses built with plastic windows and houses built without windows.

2. Have half the students make a house without windows and the other half make houses with two windows. The windows should be covered with clear plastic (use plastic storage bags cut to fit over the window openings, seal with clear adhesive tape). All houses should have one small door.

3. Have each group put its house outdoors in a sunny place with the thermometer (provided in the kit) inside the house.

4. Have students measure the temperature in the two types of houses three times: a) early in the morning; b) at noon; and c) at the end of the school day.

5. Have students record their data on a chart. Which houses have the greatest increase in temperature? [houses with windows] What scientific principle explains this? [greenhouse effect]

6. Now have students answer the following questions:
 a) What source of energy is used to heat the model houses? [solar energy]
 b) Where would the effect of solar energy be most pronounced: your geographic location, or Andean location? [Andes, due to the location near equator and high altitude]
 c) What happens to the temperature in Andean homes during the day? [increases by 18 degrees F]
 d) What direction should doors in Andean homes face to take advantage of solar heating? [north toward the sun]
 e) How could energy efficiency in Andean homes be improved? [add glass windows or cover windows with blankets at night]

7. **Closure**
 a) Look back over these activities. How many involved mathematical calculations? Ask students what kind of mathematical tools the Incas had. [quipu and counting trays] Have students discuss how the Incas could have built Machu Picchu and many other engineering marvels with limited mathematical tools.
b) Have students compare the life span of our buildings to those built by the Incas. [The buildings at Machu Picchu have remained almost intact (except for thatched roofs) for about 550 years. Our buildings are built to last 100 to 150 years.]

c) Engineers often stress the importance of building a good foundation. Explain that 60% of the construction effort at Machu Picchu went into building the substructure (below the surface). Ask students to cite examples of substructures. [Foundations for buildings, drainage system, soil for terraces]

8. Assessment: Ask students to write a one- to two-page essay on the following topic:
Think about your visit to the exhibition Machu Picchu: Unveiling the Mystery of the Incas. Describe three techniques you learned about that archaeologists have used to study the Inca people. Hint: Think about these activities that archaeologists do in their work: observing, measuring, hypothesizing, creating a model, excavating, examining through a microscope. Cite examples of how archaeologists carried out these tasks and what they learned as a result.
IV. Lesson Plans: Adjusting to an Extreme Environment

Introduction

Explain that students will be going to the exhibition Machu Picchu: Unveiling the Mystery of the Incas. They will be learning about the Inca Empire, a sophisticated civilization that was located in the extreme environment of the Andes Mountains. At the height of its power the Inca Empire controlled an area in South America that stretched over 2,500 miles along the Andes Mountains and ruled between 10 and 14 million people. Descendants of the Incas still live in the Andean highlands. Before they go to the exhibition students will learn about how people living at extremely high altitudes in the Andes have adjusted to their environment.

Lesson 1: Are We Getting Shorter or Taller?

Objective

Students will compare changes in height across generations for Andean people and Americans.

Inquiry question

Ask students if they think they will be taller as adults than their parents. Why or why not?

Before beginning the unit:

1. Explain to students that they will be comparing growth rates between Americans and Andean people over generations. They will conduct a survey to study the increase in height between generations of Americans and learn if the height of Andean people has increased over generations.

2. Ask students to choose two grown people they know who are in the same family. The two people they choose should be of the same sex and of two different generations. One person should be in their forties or fifties and the other (son or daughter) over 18. Have them measure the height of each person and record the measurement.

3. Assign the background article “The Incas” (Section VII) as homework one or two days before you introduce the unit.

Procedures

1. Height survey:
 a) Record the results of the students’ height survey on the board. Make four columns: Height of boys, Height of men, Height of girls, Height of women. Record the height information, one row per family. Each student should record the data in chart form.
b) Have students calculate the difference in height (plus or minus) of the pairs of boys compared to men and of girls compared to women. Add the differences in height of all pairs and calculate the average difference between the two generations for each sex. On average, how much taller or shorter is the younger generation than the older generation? Have students make a bar graph to compare the average height of different generations for boys and men, and girls and women. Ask students to give hypotheses to account for the differences.

2. Explain that archaeologists have studied the bones of people who were buried at Machu Picchu 400 to 500 years ago. They found that people living then (about A.D. 1500) were about the same height as people living in the Andean highlands today: men living at Machu Picchu averaged 5’2” and women averaged 4’11”, compared to 5’2” for men and 4’8” for females today. Have students add this information to their bar graph.

3. Ask students to speculate as to why Andean people have not increased in height over several generations. [Possible responses: Their diet may be inadequate or unchanging; their small height might be determined genetically; their small size may be more adaptive to high altitudes.]

4. Explain that over the next few days students will be studying how Andean people have adjusted physically to living in an extremely high altitude environment.
Lesson 2: Human Respiration

Objective

Students will understand the process of respiration, including the exchange of oxygen and carbon dioxide in the lungs. They will make models showing how the human lung works.

Materials

Two large plastic soda bottles per student, two packages of small balloons, hot glue, scissors.

Procedures

Short cut: This activity can also be done as a teacher demonstration.

1. Introduction: Explain that the class will be making a model of the human lung to study how changes in air pressure affect respiration.

2. Have students make a model of the human lung with plastic soda bottles and a balloon as follows:
 a) Cut off the top of one soda bottle about 3 inches below the top.
 b) Put the cut-off top against the side of another plastic bottle and make a mark around the circle of the cut-off bottle.
 c) Cut out a hole in the bottle along the marks.
 d) Glue the two bottles together.
 e) Put the lid on the cut-off bottle.
 f) Take the top off the large bottle. Blow up a balloon and twist it to seal the air in.
 g) Put the balloon over the opening of the large bottle.
 h) Now have students experiment with how changing air pressure affects inflation of the balloon by carrying out the following experiment:

 Step A: Squeeze the large bottle. What happens to the balloon? [It inflates.] Have students take turns squeezing the bottle and observing the result.

 Step B: Now have the students let out a little bit of air by loosening the top of the cut-off bottle slightly. Squeeze the bottle again. What happens to the balloon now? [It doesn't inflate as much.]

3. Homework: Have students write up this experiment. Ask them to decide which part of the experiment (Step A or B) shows how lungs would operate in a high altitude environment. [Step B—lower air pressure means the balloon inflates less]

4. Assessment: Have students write a paragraph explaining how lower air pressure affects respiration. Ask them to think of ways the respiratory system might compensate in high altitude environments with lower air pressure. [the lungs can get larger to take in more air]
Lesson 3: Evolution or Acclimatization?

Objective

Students will understand how living in a high altitude environment affects respiration.

Inquiry question

In what ways would you expect the human body to adjust to the extreme Andean environment?

Materials

Handout 1: Adjusting to an Extreme Environment, atlas or globe.

Procedures

1. Introduction: Show the class a map or the globe. Have one student locate Peru. Ask him or her to find Peru’s latitude. Then discuss with the class how they think Peru’s location near the equator affects its climate. (Many students may think that because Peru is close to the equator, its climate is hot and humid.) Ask students to discuss the major physical feature of Peru. [Andes Mountains; find the highest point, Mt. Huascaran, at 22,205 ft.] How does the presence of this high mountain chain affect Peru’s climate? (Refer students to the background article “The Incas,” Section VII.) [It makes it cold and dry.]

2. What problems are associated with living in an extremely high altitude environment? [altitude sickness]

3. Ask students to speculate about how people who live at a high altitude over generations might evolve or adjust to living in a high altitude environment. [Possible responses: They may develop increased body fat to provide added warmth in a cold climate. Their bodies might develop larger lungs to process more oxygen.]

4. Now have students read Handout 1: Adjusting to an Extreme Environment.

5. Assessment: (assign as homework) Have students answer the following questions:
 a) Identify three environmental challenges created by high altitude as described in the handout.
 b) What are some of the symptoms of altitude sickness?
 c) What is acclimatization? What physical adjustments do people develop who live in a high altitude environment over a long period of time?
Handout 1: Adjusting to an Extreme Environment

People first arrived in South America relatively late in human history—about 22,000 years ago. By the time humans arrived in the New World, they had evolved into modern *Homo sapiens*. Humans did not evolve significantly in the New World and are genetically similar to people from Africa, Asia and Europe. But as they settled the varied climates of South America, from the frigid cold of Tierra del Fuego to the steamy rainforests of the Amazon, their bodies successfully adjusted to many extreme environments.

People who settled in the highlands of Peru faced an especially challenging environment. At altitudes of 11,300 feet, such as Cuzco, the air is thin and many people from lower elevations experience altitude sickness when they first arrive there. This is because as altitude increases, the concentration of oxygen in the atmosphere decreases due to a lower force of gravity as one moves away from the earth’s surface. When people breathe in this “thin” air, they get fewer oxygen molecules per breath. This “thin” atmosphere absorbs fewer of the sun’s rays—in fact, exposure to cosmic radiation at 13,000 feet is 10 times that at sea level because of the reduced ozone present at high altitudes.

People who grow up in lower altitudes and visit high altitude areas suffer from hypoxia, or altitude sickness, which is characterized by shortness of breath, fatigue, headache, disrupted sleep patterns, nausea, difficulty in seeing or hearing, faulty short-term memory, dizziness, and sometimes vomiting. After several days (between two days and two weeks, depending on the altitude), a person’s body becomes used to the higher altitude and these symptoms decrease. But visitors will probably continue to get tired more quickly when doing physical exercise than people native to the area.

The bodies of people who live at high altitudes over a long period of time gradually adjust to the high elevation. They develop larger lung capacity and larger chests. Their bodies have also developed more efficient respiratory systems. The process of adjusting to a specific extreme climate over time is called acclimatization. These changes occur after birth and are not inherited by subsequent generations.
Lesson 4: The Effect of Altitude on Gas Diffusion

Objective

Students will analyze information about how the respiration of Andean people differs from that of people living at lower elevations.

Inquiry question

In what ways does the human respiratory system adjust to a lack of oxygen at high altitudes?

Materials

Handout 2: The Effect of High Altitude on Oxygen Intake, microscope, blood specimen slides.

Procedures

1. Activity: Have students take their pulse rate at rest and after physical activity. Have them record their pulse rates before and after physical activity and draw a graph showing that pulse rate increases with physical activity.

2. Review with students why respiration is more difficult at high altitudes. Explain that they will be analyzing how the bodies of Andean people have changed to obtain oxygen more efficiently.

3. Distribute Handout 2: The Effect of High Altitude on Oxygen Intake and have students read it in class. Then discuss the questions as a group.

4. Discussion: Is a more efficient respiratory system inherited or does it develop after birth?

Explaination: Red blood cells carry oxygen from the lungs to the body's cells. Red blood cells are produced in the bone marrow. Scientific studies show that people growing up at high altitudes have bone marrow that produces more red blood cells. This is because their bone marrow grows for a longer period of time. While bone marrow stops growing in sea level dwellers, at age 10 in girls and age 16 in boys, in the highlands bone marrow continues to grow until age 22 for men and 18 for women.

Children who are born at a low altitude but move to a highland environment during their growth years develop greater lung capacity compared to children who continue to live on the coast. Adults who move to a high altitude do not increase lung capacity.

Would this suggest that the more efficient respiratory system is inherited or does it develop after birth? [develops after birth]

5. Under the microscope: Have students examine blood specimen slides under a microscope and identify red blood cells.
Handout 2: The Effect of High Altitude on Oxygen Intake

As you know, the earth is enveloped in a thick blanket of air. This blanket is denser at sea level than it is at higher elevations because gravity is stronger near the earth’s surface than it is at higher altitudes. As altitude increases, fewer and fewer air molecules are present in the atmosphere. The number of air molecules in the air affects the atmospheric pressure—at sea level, atmospheric pressure is high, and it decreases with increases in altitude.

Our respiratory systems depend on air pressure to function. When we breathe in, the air pressure in our lungs increases. The pressure in the lungs is greater than the pressure in the blood vessels of the lungs, so gas from the lungs permeates the blood vessel walls and enters the blood.

At high altitudes, the difference in pressure between the lungs and the blood vessels is less. Therefore, less oxygen passes through the blood vessel walls into the blood stream. Oxygen is carried through the blood stream by red blood cells containing hemoglobin, a substance made of iron.

Human beings and other mammals evolved in low altitude environments, where the atmospheric pressure is about 760 millimeters of mercury. At this level of atmospheric pressure, blood passing through the lungs becomes practically saturated with oxygen. At 9,000 feet, the atmospheric pressure is reduced to 550 millimeters mercury. The effects of lowered oxygen is noticeable at 8,000 to 10,000 feet. At 14,000 feet and above, altitude sickness is pronounced. At 18,000 feet the oxygen available in the lungs drops to below half that available at sea level. At this altitude, blood passing through the lungs cannot take up enough oxygen to supply the cells of the body, and fainting or other physical impairment can occur.

The bodies of people who live in very high altitudes have developed ways of processing oxygen more efficiently. Scientists have studied how the bodies of people who have grown up in high altitudes have changed to adjust to lower levels of available oxygen. They did an experiment to see how the bodies of people who grew up in different altitudes react to exercise. They measured the heart rate (pulse) and breathing of people who grew up in the Andean highlands and people who grew up in Lima, Peru, at sea level. Both groups walked on an uphill treadmill. The highland group walked for almost an hour at 1,640 feet, while the group from the seacoast walked for about half an hour near sea level. The table below shows how the two groups responded to physical exercise.

Examine the information in the table. What does it suggest about the physical adjustments the bodies of Andean people have undergone to acclimatize to lowered oxygen levels?
Treadmill Walking

At an 11% grade, 48 feet per minute

<table>
<thead>
<tr>
<th></th>
<th>Lima group, near sea level</th>
<th>Highland natives, at 1,640 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation* of lungs, liters per minute</td>
<td>37.5</td>
<td>42.2</td>
</tr>
<tr>
<td>Oxygen consumption, liters per minute</td>
<td>1.33</td>
<td>1.17</td>
</tr>
<tr>
<td>CO₂ produced, liters per minute</td>
<td>2.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Respiration rate per minute</td>
<td>37.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Pulse rate per minute</td>
<td>183.0</td>
<td>160.0</td>
</tr>
<tr>
<td>Blood hemoglobin** grams per 100 ml.</td>
<td>16.3</td>
<td>20.1</td>
</tr>
</tbody>
</table>

*Ventilation is the amount of air inhaled per minute
**Hemoglobin is the compound in red blood cells that carries oxygen to the blood cells.

1. What measurements are about the same for highland people compared to those living at sea level? [respiration rate, oxygen consumption, carbon dioxide produced]

2. What measurements are significantly different? What are the biggest differences shown in the chart for highland people compared to people living at sea level? [ventilation (amount of air breathed in), blood hemoglobin, pulse rate]

3. Which group has a more efficient respiratory system? Why? [people living at high altitudes]

4. Ask students to explain why the respiratory systems of people living at high altitudes are more efficient, based on the information contained in the table. [People living at high altitudes breathe in more air because they have larger lung capacity. They also have more hemoglobin in their blood, so the blood can pick up more of the available oxygen in the lungs. They have a lower pulse rate, even though they were on the treadmill for a longer period of time. Therefore they have a more efficient respiratory system.]
Lesson 5: Nutrition: The Food Pyramid

Objective

Students will learn about the main food groups and evaluate the nutritional content of their favorite foods.

Inquiry question

How nutritious are your favorite foods?

Materials

Poster of the food pyramid. (To get the most updated food pyramid, see the “Healthy Eating Pyramid,” developed by Dr. Walter Willett of the Harvard School of Public Health, at the Harvard Health Letter website at http://www.health.harvard.edu, go to Back Issues, Features and Tools, Turning the Food Pyramid Upside Down, or see Newsweek, January 20, 2003, for an article on the revised food pyramid.)

Procedures

1. Introduction: Explain to students that they will be learning about the main food groups and evaluating how nutritious their favorite foods are.

2. Divide the class into six groups.

 a) Assign each group one of the main food groups: protein; starch; glucose; or fat.

 b) Have one group study iron, an important component of hemoglobin in the blood, and another group study vitamin C.

 c) Have each group do research and write a report explaining why their food component is important. What role does it play in the functioning of the human body? What are some foods that are sources of each? Note to teacher: The World Book article “Nutrition” has concise information on the food groups and Recommended Daily Allowances of various nutrients.

3. Have each group present its findings to the class. Have them locate foods rich in their food component on the revised food pyramid. Which foods contain protein, starch, glucose, fat?

4. Have students bring in samples of their favorite food (must have a food label). Have each student describe the nutritional content of his or her food and locate it on the food pyramid. Which foods are highest in protein? Fat? Sugar? Sodium? Iron? Vitamin C? What important information is missing from the food label? [vitamins and minerals are often not listed]
Lesson 6: The Andean Diet

Objective

Students will analyze a typical Andean diet and construct a food pyramid illustrating the nutritional content of the diet.

Inquiry question

How do you think the diet of people living in very high altitude environments would be different from ours?

Materials

Handout 3: The Andean Highland Diet.

Procedures

2. Have students read the handout.

3. Discussion: Ask students to analyze the diet of Andean people at two different levels of altitude by answering the following questions:

 a) How many types of food did the people living at 9,000 feet consume? The people living at 13,000 feet? [17, 10]

 b) What accounts for the smaller variety of food at the higher altitude? [People are more dependent on what they can grow locally; fewer types of plants can grow at high altitudes.]

 c) Which group had the largest total food consumption (total grams consumed)? Can you think of an explanation for this? [People may have higher calorie requirements at high altitudes.]

 d) Which group ate the most native foods? Why? [People living at higher altitudes are more dependent on local plants; fewer types of plants can survive at high altitudes.]

 e) What foods comprised the largest portion of the diet of those living at 9,000 feet? [corn, potatoes, other tubers] At 13,000 feet? [potatoes, chuño]

 f) Do you think that the diet of people living in both villages would vary according to the season? How? [More fresh vegetables would be available after the harvest. Several months after the harvest, people would be more dependent on preserved foods like chuño.]

 g) How much meat did each group eat? Have students compare this to their daily consumption of meat. Note: A quarter-pound hamburger equals about 110 grams.

4. Divide the class into two groups. Have one group construct a food pyramid for each of the village diets listed. Note: They can omit the foods that are consumed in small quantities (one gram). Have one person from each group explain the pyramid and contrast it to the other one.

5. Now compare the diet of people in the two Andean villages to that of Americans by comparing the recommended American food pyramid with the two food pyramids constructed for the
villages. What foods that we eat are missing from the Andean food pyramids? [They eat few dairy products or eggs.] Note: Researchers who conducted the study report that eggs, milk and meat are often sold by villagers to obtain cash, instead of being eaten. [No sugar is consumed in the high altitude village because it would need to be imported and purchased. This would require money, a transportation network, and a store.]

6. Ask students to compare their diet to that of Andean people. Which group seems to have better nutrition? Why? Ask them to evaluate specific components of each diet, including sugars, fat, protein, and iron.

7. Assessment: Have students write a one-page essay explaining how the Andean diet is well suited to the needs of people living at a high altitude.
Handout 3: The Andean Highland Diet

As you have learned, different “ecological niches” exist in the Andean highlands. A wider variety of plants can be grown at lower altitudes. As altitude increases, plants must be able to withstand colder temperatures.

In the Andes, the largest settlements are located between 8,000 and 11,500 feet above sea level, where the soil is fertile and weather conditions are favorable to the growth of tubers, legumes, vegetables and fruit. Rice is the most common food up to 6,500 feet, and maize from 6,500 to 11,500 feet.

Above 11,500 feet the soil is poor and thin, and potatoes substitute for cereals as the staple food. Fresh potatoes are common at altitudes of between 10,000 and 12,500 feet, while chuño is more common at higher altitudes. Between 13,000 and 15,800 feet, early morning temperatures are often below freezing, so only plants that are frost resistant, such as tubers, cañihua and quinoa, can be raised. Above 15,800 feet, vegetation is almost absent.

People living today at high altitudes are more reliant on growing their own food, since poor transportation systems make it difficult to import food. They often lack the cash to purchase imported foods.

Researchers have studied the diets of villagers living at different altitudes in the Andes. Vicos lies at an altitude of 9,000 feet, and Nuñoa is at 13,000 feet. Nuñoa is surrounded by grassland and herding is the main economic activity. Most families herd alpacas, llamas, sheep and cattle. They are limited to growing frost-resistant crops such as quinoa, cañihua and bitter potatoes. Their diet lacks foods high in calcium, but researchers have learned that they get calcium from adding burned limestone as a spice to porridge.

Compare the diets of the people living in the two villages. Which diet is more varied? Tastier? How do these diets differ from the typical American diet?
Food Consumed at Two Different Altitudes in Peru

(Grams per day, rounded to the nearest gram)

Note: Native (Quechua) foods are listed in italics. Consult the glossary for food items you are not familiar with.

<table>
<thead>
<tr>
<th>Food product</th>
<th>Village of Vicos 9,000 feet</th>
<th>Village of Nuñoa 13,000 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Corn</td>
<td>151</td>
<td>25</td>
</tr>
<tr>
<td>Wheat</td>
<td>107</td>
<td>14</td>
</tr>
<tr>
<td>Bread</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Quinoa</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Cañihua</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Broad beans</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Potatoes</td>
<td>347</td>
<td>741</td>
</tr>
<tr>
<td>Chuño</td>
<td>—</td>
<td>470</td>
</tr>
<tr>
<td>Other tubers</td>
<td>217</td>
<td>28</td>
</tr>
<tr>
<td>Meat</td>
<td>41</td>
<td>93</td>
</tr>
<tr>
<td>Lard</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Onions</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Rocoto</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>Pepper</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Cabbage</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Coleus</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Coriander</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Huacatay</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Sugar</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Total number of foods consumed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total grams of food consumed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glossary of Andean foods

Quinoa: The seed of a leafy plant that is distantly related to spinach, *quinoa* is an excellent source of protein and contains lysine, an essential amino acid. *Quinoa* is also high in iron, potassium and riboflavin. It has been cultivated in the Andes for over 5,000 years.

Kiwicha (amaranth): A grain grown in the Andes that is richer in protein than the major cereals and is a good source of lysine. It is also high in calcium, phosphorus, iron, potassium, zinc, vitamin E, and vitamin B complex.

Cañihua: A high protein grain that grows at high altitudes in the Andes.

Rocoto: A variety of small hot pepper.

Coleus: A member of the mint family, coleus is used in Andean cooking as an herb. It also has medicinal uses.

Huacatay: A member of the marigold family, *huacatay* is an herb used in Peruvian cooking.

Chuño: Dehydrated potato.
Lesson 7: Comparing the Nutritional Content of American and Andean Foods

Objective

Students will conduct a scientific experiment to compare the nutritional content of American and Andean foods.

Inquiry question

How nutritious are Andean foods compared to the recommended American diet?

Materials

Two to three weeks before the unit: Order the Kemtec “Food and You” kit for measuring the nutritional content of various foods (see Kits in Resources).

Procedures

Obtain samples of Andean food, including quinoa, kiwicha and chuño, from a South American specialty store or health food store. Get fresh or frozen sweet corn and potatoes from the grocery store.

A few days before the lesson: Ask students to bring in samples of their favorite foods.

In class or as homework: Have students conduct research on the Internet on native Andean foods (quinoa, kiwicha, chuño). Have them write a brief report on the nutritional content of each food.

1. Introduction: Show students a sample of quinoa, a grain grown in the Andes and a staple of the Andean diet. (Refer back to Handout 3: The Andean Highland Diet.) Explain to students that they will be comparing the nutritional content of Andean and American foods. They will analyze the nutritional content of a variety of Andean foods for protein, starch, glucose, fat, vitamin C and iron, and compare them to American foods.

2. Lab activity

a) Divide the class into groups of two or three students. Distribute Kemtec lab kits and samples of a variety of Andean and American foods.

b) Have students follow the directions in the lab manual (see pages 1 to 6) using the vials supplied in the kit. Test solutions for starch, sugar, fats, protein and vitamin C. The substances will change color in the presence of a given nutrient. These vials will be the control group.

c) Now have the students use the test kit solutions to test the Andean foods (quinoa, kiwicha, raw potato, chuño, corn) for the presence of starch, sugar, fats, protein and vitamin C. Then ask them to test the favorite foods they brought in for the presence of starch, sugar, fats, protein and vitamin C.
d) Now have the students read the nutritional labels for the Andean foods—kiwicha, quinoa and chuño. Which food is high in iron? [quinoa] Why would the presence of iron be especially important for Andean people? (Think back to what you learned about respiration.) [Red blood cells carry oxygen from the lungs to the individual cells. Hemoglobin, the substance that transports the oxygen throughout the body, contains iron. Because they live in a high altitude environment, Andean people require more red blood cells, and hence more iron.]

e) What other nutrients do quinoa, kiwicha, and chuño provide? [quinoa and kiwicha are high in protein; chuño is high in carbohydrates, but contains no vitamin C]

f) Under the microscope: Have students examine samples of chuño under the microscope by scraping off particles and placing them on a microscope slide. They should examine the powdered chuño first when it is dry. Then add water. How does the appearance of the chuño cells change? Why?

3. Assessment: (assign as homework) Have students write a paragraph explaining how the Andean diet is suitable for those living at a high altitude. [The Andean diet is high in iron, protein, and carbohydrates.] Why is iron especially important to people living at high altitudes? [Iron facilitates oxygen transport in the blood.]

4. Overall assessment: Describe three ways Andean people have acclimatized to living in a high altitude. Discuss the scientific processes behind each.
Resources

Kits

The following kits provide students with valuable hands on activities relating to the three science guides. Except for the food analysis kit, they are optional—the curriculum can be taught without the suggested kits. Prices listed are for individual kits; sales representatives can often give discounts for kits ordered in quantity.

GEMS Earth, Moon and Stars (optional). Cost: $131.79.
Contains a plastic globe tilted at a 23.5 degree angle for each student, a bright light to represent the sun, and plastic moons. Available from: VWR Sargent-Welch, P.O. Box 5229, Buffalo Grove, IL 60089-5229; 1-800-727-4368; www.sargentwelch.com.

Available from: Neo/SCI, P.O. Box 22729, Rochester, NY 14692-2729; www.neosci.com.

GEMS Hot Water and Warm Homes from Sunlight (enrichment). Cost: $192.49.
Available from: VWR Sargent-Welch, P.O. Box 5229, Buffalo Grove, IL 60089-5229; 1-800-727-4368; www.sargentwelch.com.

Available from: Kemtec T&S Educational, Inc., 8944 Beckett Road, West Chester, OH 45069; 513-860-4949.
V. Student Guide to Machu Picchu: Unveiling the Mystery of the Incas

This guide is designed to help you learn as much as you can during your visit to Machu Picchu: Unveiling the Mystery of the Incas. You are to write down answers to the questions as you walk through each room of the exhibition. You will be graded on how complete your answers are. Questions labeled “EC” are more difficult and will earn extra credit points. Bring the handout to your next class—it will serve as the basis for discussion.

Film: Unveiling the Mystery of the Incas

View the introductory film and answer the following questions:

1. Where is Machu Picchu located?

2. Give the approximate dates for the beginning and end of the Inca Empire.

3. Who brought Machu Picchu to the world’s attention in 1911?

Excavation

1. Who are the two men shown in the diorama?

2. What are they doing?
3. When does the scene take place?

4. Look at the background photograph. How is Machu Picchu different today than when Hiram Bingham discovered it? How would it have looked when the Inca emperor lived there?

5. What is the hole at the right of the scene? What is inside?

6. Look in the display case across the room. It shows some of the objects found in the grave. What was found there?

7. This room shows Hiram Bingham and his assistant in the process of excavating Machu Picchu. Write a sentence describing what excavation is.

Go into the next room to view the video.

Curators' Tour

Listen to the six-minute video Curators' Tour of Machu Picchu and look at the model of the site as each part is lit. Be sure to get in at the beginning of the video. You may want to hear it twice.

1. Describe Machu Picchu's geographic setting. (Look at the photographs to the left and right of the model.)
2. According to the video’s narrator, what was the purpose of Machu Picchu?

3. According to Richard Burger, how was the Inca emperor’s residence designed to show he was important? (list three features)

4. According to Lucy Salazar, what was the Torreón?

5. Why do archaeologists think it served this purpose?

6. According to Lucy Salazar, what evidence is there that metal objects were made at Machu Picchu?

7. According to Richard Burger, how was Machu Picchu defended? (list three ways)

8. According to Lucy Salazar, where did the residents of Machu Picchu get their water?

9. What structures were built at Machu Picchu to carry water?
10. According to Lucy Salazar, what did the Incas believe about water?

11. Look at the model. What engineering challenges did the Inca builders and engineers face? (list at least three)

Go into the room that is paved like an Inca road.

Inca Road

1. Look at the huge photo of Machu Picchu. What does it show about Machu Picchu’s climate?

2. What are the walls that look like stairs called? Why were they built?

3. Look at the map on the left of the Inca road system. On the map at the right, estimate the length of the Inca Empire from top to bottom, using the key.

4. (EC) Who would have built and maintained this road system?

5. What is shown in the black and white drawing?
6. Why were bridges necessary in the Inca Empire?

7. (EC) Read the paragraph about the llama in the right-hand corner. List one advantage and one disadvantage of llama transport.

8. Look at the Inca road in the photo on the left. Does it help explain why the Inca did not use the wheel?

9. Study the objects in the cases. What are they made of?

10. Choose three objects you like best. What were they used for?

Go forward toward the recreated house. Before you enter, note how Inca buildings were made.

11. What are the walls made of? Was mortar used?

12. Inca buildings were very resistant to earthquakes. Can you see why?
13. Look up at the roof. What is it made of?

14. Would this roofing material last very long?

**Inca Emperor’s Residence**

1. Which man is the Inca emperor? How do you know?

 Note: Refer to the written explanation to help answer the following two questions.

2. Listen to the language the emperor and his advisor are speaking. What is it?

3. Is it still spoken today?

4. (EC) What do you think the emperor and his advisor are talking about?

5. Where do you think the Inca emperor’s pets came from?
6. Look at the quipu in the large display case. What is it made of?

7. Write a brief description of the quipu.

8. What were quipus used for?

9. What does the word quipu mean?

Enter the large room with many glass cases.

1. What is the kneeling man on the left doing?

2. Metalworkers sometimes pound soft metals like silver and gold into sheets and hammer it to change its shape. Find an example of hammered silver or gold objects in the case.

3. Metalworkers also pour hot metal into molds to make objects. Find three examples in this room of metal objects that were made this way.
4. (EC) Look at the carved piece of wood to the far right in the display case that looks like a man’s face. Did you see something elsewhere in the exhibition that could have been made from a form like this?

5. (EC) How do you think the object was made: by pouring hot metal into a mold, or by making a sheet of metal and hammering it?

6. Find three examples of things made out of pottery and describe what they were used for.

7. Look at the label about “Everyday Life.” Look carefully to see who the man is. What is he doing?

8. How many people lived at Machu Picchu when the Inca emperor and his attendants were there?

9. When did the emperor and his attendants stay there?

10. Find the plumb bob in the display case to the left of the video screen. What is it made of? What does this tell you about its importance?
11. Listen carefully to the video on archaeoastronomy and find out what archaeoastronomers think the plumb bob was used for.

12. (For astronomy unit) Watch the video on archaeoastronomy.

 A. What was the Inca name for the sun god?

 B. What did women worship?

 C. What did the Incas use astronomy for? (name three things)

 D. What do archaeoastronomers think the Torreón was used for?

 E. Who were the yancas?

 F. What happens on the June solstice?

 G. What was the cave called the Intimachay used for?

 H. What festival was celebrated at the time of the December solstice?

 I. Why did the Incas observe the star cluster known as the Pleiades?

 J. What shapes did the Inca skywatchers see in dark cloud constellations?

 K. What solar event did Inca yancas predict by using a plumb bob suspended on a string?

 L. Look again at the plumb bob in the display case to the left of the video screen. Archaeologists think that this plumb bob might have been used in the shadow casting activities described in the video.
13. Llama lookout: How many examples of llamas can you find in this room?

14. Go to the display case with everyday items in it, across from the three video screens. What things in the case are still used today?

15. What things used by the Incas in daily life are not used today? Why not?

Interactive Explorer/Ongoing Investigations
(this room and next)

Divide into four groups. Three groups can explore Machu Picchu on the three "Interactive Explorer" videos. (Note: The large screen on the right can be used by large groups to watch what is being shown on the smaller video screen.)

The fourth group should go into the next room and answer the following questions. Be sure your group does the activities in both rooms.

Rediscovery Room

Each group will choose one archaeologist to report on by answering the following questions.

1. Watch the video on the screen to your right and choose one archaeologist. What is his or her name?

2. Describe what he or she is studying.
3. What archaeological techniques is he or she using?

4. What new information has he or she obtained about the daily life of the Incas from this research?

5. Look at the models of skulls in the case. Compare the shapes of the three skulls.

6. How did parents shape the skulls of babies?

7. Do you think this hurt the babies?

8. Do you think it made them less smart?

9. Why do you think parents might have wanted to shape their children’s skulls in this way?

10. Find the photograph of terraces. What crops were grown in terraces at Machu Picchu?
11. Do you think enough food could be grown on these terraces to feed 600 people?

12. (EC) Look at “Daily Diet and Bone Chemistry” in the far corner. Read the explanation of how bones can be analyzed to see what people ate at Machu Picchu. What does this bone analysis show about the diet of people who lived there?

Epilogue

1. Look at the graph on the left. How did the Inca population decline around the time of the Spanish Conquest?

2. What were some of the diseases that caused this sudden drop in population?

3. When did the native population of the former Inca Empire finally recover?

4. Find three examples of how modern Peru is a mixture of Spanish and Inca cultures.
Homework Assignment

Write a paragraph on one of the following questions:

1. Why was Machu Picchu built?
2. What was your favorite part of the exhibition?
3. What did you learn about Inca people?
4. How do archaeologists find out about Inca life?
VI. Teacher's Key to Student Guide
to Machu Picchu: Unveiling the Mystery of the Incas

This guide is designed to help students learn as much as they can during their visit to Machu Picchu: Unveiling the Mystery of the Incas. Have them write down answers to the questions as they walk through each room of the exhibition. Tell them that they will be graded on how complete their answers are. Questions labeled "EC" are more difficult and will earn extra credit points. Have them bring the handout to the next class—it will serve as the basis for discussion.

Entry Room

Before you enter the exhibition, look at the life-sized llama on display. As they view the exhibition, have students find as many examples as possible of how the llama was used by the Incas in art and everyday life.

Below are answers to questions contained in the Student Guide to the exhibition (Section V).

Film: Unveiling the Mystery of the Incas

View the film Unveiling the Mystery of the Incas and answer the following questions:

1. Where is Machu Picchu located?

 [Andes Mountains of present-day Peru, South America]

2. Give the approximate dates for the beginning and end of the Inca Empire.

 [A.D. 1430 to 1532]

3. Who brought Machu Picchu to the world's attention in 1911?

 [Hiram Bingham, a professor of Latin American history at Yale]

Excavation

1. Who are the two men shown in the diorama?

 [Hiram Bingham and his assistant Alvarez]

2. What are they doing?

 [Hiram Bingham is taking photographs, his assistant is sweeping earth from artifacts]

3. When does the scene take place?

 [1912]
4. Look at the background photograph. How is Machu Picchu different today than when Hiram Bingham discovered it? How would it have looked when the Inca emperor lived there?

[When he discovered it, it was overgrown with vegetation. When the Inca emperor lived there it looked more like it does today, except that buildings had roofs.]

5. What is the hole at the right of the scene?

[a grave]

What is inside?

[bones, pottery]

6. Look in the display case across the room. It shows some of the objects found in the grave. What was found there?

[pottery, bones, shawl pins]

7. This room shows Hiram Bingham and his assistant in the process of excavating Machu Picchu. Write a sentence describing what excavation is.

[Excavation is the process of carefully digging up artifacts.]

Go into the next room to view the video.

Curators’ Tour

Listen to the six-minute video Curators’ Tour of Machu Picchu and look at the model of the site as each part is lit. Be sure to get in at the beginning of the video. You may want to hear it twice.

1. Describe Machu Picchu’s geographic setting. (Look at the photographs to the left and right of the model.)

[very mountainous terrain]

2. According to the video’s narrator, what was the purpose of Machu Picchu?

[It was a country palace or royal estate for the Inca emperor.]

3. According to Richard Burger, how was the Inca emperor’s residence designed to show he was important? (list three features)

[it was isolated, had a private garden, was made of fine stone construction, had fountains to supply water, had private bath]
4. According to Lucy Salazar, what was the Torreón?
[a religious temple]

5. Why do archaeologists think it served this purpose?
[it is similar to a religious temple in Cuzco, has fine stone walls that are curved, has a cave with niches for religious objects]

6. According to Lucy Salazar, what evidence is there that metal objects were made at Machu Picchu?
[many metal objects were found at the site, evidence that metal workers lived and worked on site]

7. According to Richard Burger, how was Machu Picchu defended? (list three ways)
[it has steep cliffs on three sides, a guard tower, a moat, and only one entrance]

8. According to Lucy Salazar, where did the residents of Machu Picchu get their water?
[a spring]

9. What structures were built at Machu Picchu to carry water?
[16 stone fountains, canal]

10. According to Lucy Salazar, what did the Incas believe about water?
[The Incas believed that water cycled through the universe and ensured fertility.]

11. Look at the model. What engineering challenges did Inca builders face? (list at least three)
[it is in a remote location, it is built on steep cliffs, it has a lot of water run off, it was hard to carry stones up steep cliffs, sources of water, soil and stone had to be found]

Go into the room that is paved like an Inca road.

Inca Road

1. Look at the huge photo of Machu Picchu. What does it show about Machu Picchu's climate?
[cloudy, moist, cool]
2. What are the walls that look like stairs called?
 [terraces]

Why were they built?
 [to create a flat surface for growing crops]

3. Look at the map on the left of the Inca road system. On the map at the right, estimate the length of the Inca Empire from top to bottom, using the key.
 [2,500 miles]

4. (EC) Who would have built and maintained this road system?
 [laborers doing mita work]

5. What is shown in the black and white drawing?
 [a bridge]

6. Why were bridges necessary in the Inca Empire?
 [geography was very mountainous, many rivers]

7. (EC) Read the paragraph about the llama in the right-hand corner. List one advantage and one disadvantage of llama transport.
 [advantage: llamas follow a lead animal and require little supervision by people; disadvantage: a llama can carry only about 100 pounds, cannot carry adults]

8. Look at the Inca road in the photo on the left. Does it help explain why the Inca did not use the wheel?
 [Yes, the road is very steep and rocky, making it difficult to use a wheeled cart.]

9. Study the objects in the cases. What are they made of?
 [gold, silver, stone, pottery, wood]

10. Choose three objects you like best. What were they used for?
 [answers will vary]
Go forward toward the recreated house. Before you enter, note how Inca buildings were made.

11. What are the walls made of?
[stone]

Was mortar used?
[no]

12. Inca buildings were very resistant to earthquakes. Can you see why?
[they are built of large rectangular blocks of stone that are tightly fit together]

13. Look up at the roof. What is it made of?
[thatch or grass]

14. Would this roofing material last very long?
[no, this explains why buildings at Machu Picchu do not have roofs]

Inca Emperor’s Residence

1. Which man is the Inca emperor? How do you know?
[the seated man; he is wearing a special headdress used only by the emperor, he has gold earrings and sandals, he is being served a drink in a gold cup]

Note: Refer to the written explanation to help answer the following two questions.

2. Listen to the language the emperor and his advisor are speaking. What is it?
[Quechua]

3. Is it still spoken today?
[yes]

4. (EC) What do you think the emperor and his advisor are talking about?
[They are discussing the quipu; the emperor is concerned about defending nearby gold mines; he orders that the amount of coca leaves brought to Machu Picchu be doubled.]
5. Where do you think the Inca emperor’s pets came from?
 [Amazon River region]

6. Look at the quipu in the large display case. What is it made of?
 [wool or cotton]

7. Write a brief description of the quipu.
 [It is a long string with many shorter strings attached. Some strings have knots tied in them.]

8. What were quipus used for?
 [recording information about census figures, taxes paid, keeping oral histories]

10. What does the word quipu mean?
 [knot]

Enter the large room with many glass cases.

1. What is the kneeling man on the left doing?
 [pounding metal with a stone hammer]

2. Metalworkers sometimes pound soft metals like silver and gold into sheets and hammer it to change its shape. Find an example of hammered silver or gold objects in the case.

3. Metalworkers also pour hot metal into molds to make objects. Find three examples in this room of metal objects that were made this way.

4. (EC) Look at the carved piece of wood to the far right in the display case that looks like a man’s face. Did you see something elsewhere in the exhibition that could have been made from a form like this?
 [gold and silver drinking vessels shaped like a human face]

5. (EC) How do you think the object was made: by pouring hot metal into a mold, or by making a sheet of metal and hammering it?
 [by hammering a sheet of metal]
6. Find three examples of things made out of pottery and describe what they were used for.

[answers will vary]

7. Look at the label about “Everyday Life.” Look carefully to see who the man is. What is he doing?

[The man is Guamán Poma de Ayala. He is walking through Peru finding information for his book.]

8. How many people lived at Machu Picchu when the Inca emperor and his attendants were there?

[about 600]

9. When did the emperor and his attendants stay there?

[May to September, the dry season (winter)]

10. Find the plumb bob in the display case to the left of the video screen. What is it made of?

[solid silver]

What does this tell you about its importance?

[It must have been considered important.]

If you are doing the astronomy unit, have students watch the video on archaeoastronomy and answer the following questions:

11. Listen carefully to the video on archaeoastronomy and find out what archaeoastronomers think the plumb bob was used for.

12. (For astronomy unit) Watch the video on archaeoastronomy.

A. What was the Inca name for the sun god?

[Inti]

B. What did women worship?

[the moon]

C. What did the Incas use astronomy for? (name three things)

[to forecast the seasons, to decide when to plant and harvest crops, to decide when to schedule important public events]
D. What do archaeoastronomers think the Torreón was used for?
 [a solar observatory]

E. Who were the yancas?
 [trained Inca skywatchers]

F. What happens on the June solstice?
 [the shadow falls exactly along the carved cat’s belly]

G. What was the cave called the Intimachay used for?
 [observing the December solstice]

H. What festival was celebrated at the time of the December solstice?
 [Capac Raymi, a celebration for young men reaching adulthood]

I. Why did the Incas observe the star cluster known as the Pleiades?
 [to tell them when to plant and harvest maize]

J. What shapes did Inca skywatchers see in dark cloud constellations?
 [animal shapes, including a llama and its baby]

K. What solar event did Inca yancas predict by using the plumb bob suspended on a string?
 [June (winter) solstice]

L. Look again at the plumb bob in the display case to the left of the video screen. Archaeologists think that this plumb bob might have been used in the shadow casting activities described in the video.

13. Llama lookout: How many examples of llamas can you find in this room?

14. Go to the display case with everyday items in it, across from the three video screens. What things in the case are still used today?
 [dice, tweezers, pottery cups, dishes, dolls, needles, plumb bob]
15. What things used by the Incas in daily life are not used today? Why not?
[shawl pins—we don’t need them because we have buttons, zippers]

Interactive Explorer/Ongoing Investigations
(this room and next)

Divide into four groups. Three groups can explore Machu Picchu on the three “Interactive Explorer” videos. (Note: The large screen on the right can be used by large groups to watch what is being shown on the smaller video screen.)

The fourth group should go into the next room and answer the following questions. Be sure your group does the activities in both rooms.

Rediscovery Room

Each group will choose one archaeologist to report on by answering the following questions.

1. Watch the video on the screen to your right and choose one archaeologist. What is his or her name?

2. Describe what he or she is studying.

3. What archaeological techniques is he or she using?

4. What new information has he or she obtained about the daily life of the Incas from this research?

5. Look at the models of skulls in the case. Compare the shapes of the three skulls.
 [The one on the left is normally shaped, the one in the center has a flattened forehead, the one on the right is more cone-shaped than normal.]

6. How did parents shape the skulls of babies?
 [They wrapped them in cloth or bound them to a cradle board.]

7. Do you think this hurt the babies?
 [no]

8. Do you think it made them less smart?
 [no]
9. Why do you think parents might have wanted to shape their children’s skulls in this way?

[to show they belonged to a certain cultural group]

10. Find the photograph of terraces. What crops were grown in terraces at Machu Picchu?

[maize, potatoes, beans]

11. Do you think enough food could be grown on these terraces to feed 600 people?

[No, food had to be carried from Cuzco when emperor was in residence.]

12. (EC) Look at “Daily Diet and Bone Chemistry” in the far corner. Read the explanation of how bones can be analyzed to see what people ate at Machu Picchu. What does this bone analysis show about the diet of people who lived there?

[They ate a lot of maize, which was 65% of their diet.]

Epilogue

1. Look at the graph on the left. How did the Inca population decline around the time of the Spanish Conquest?

[It declined from 14 million to 5 million.]

2. What were some of the diseases that caused this sudden drop in population?

[smallpox, measles, typhus, scarlet fever, pneumonia, plague]

3. When did the native population of the former Inca Empire finally recover?

[mid-20th century]

4. Find three examples of how modern Peru is a mixture of Spanish and Inca cultures.

[religious festivals, intermarriage, art has mixture of Spanish, Inca styles]

Summing Up

After the Exhibition

1. Discuss the handout questions.

2. Have groups report on their archaeologist.
Homework Assignment

Have students write a paragraph on one of the following questions:

1. Why was Machu Picchu built?
2. What was your favorite part of the exhibition?
3. What did you learn about Inca people?
4. How do archaeologists find out about Inca life?
VII. Background Article: “The Incas”

Note: Words in bold are defined in the Glossary.

1. Introduction

At about the time Christopher Columbus landed on a tiny island in the Caribbean Sea, Huayna Capac, a powerful emperor and warrior, was battling to expand his empire thousands of miles to the south, in what is now Ecuador and Colombia. He and his father and grandfather had fought to create an empire that at its peak extended over a vast area along the rugged Andes Mountains of South America. Probably the largest nation in the world at that time, the Inca Empire was suddenly conquered by a small band of Spanish soldiers in 1532.

The Inca people originated in the Cuzco Valley of what is modern-day Peru in about A.D. 1000, and gradually conquered neighboring tribes. The empire expanded rapidly under three Inca emperors between 1438 and 1527 until at its height it stretched from what is now the border between Colombia and Ecuador to central Chile—a distance of over 2,500 miles. At its height, the Inca people, who numbered only about 100,000, ruled from 10 to 14 million people from at least 86 ethnic groups with their own languages, traditions and religious beliefs.

The empire encompassed wildly contrasting geographic regions, ranging from towering snow-capped mountains to coastal deserts to Amazonian jungles. The heart of the empire, centered around Cuzco, was located at such a high elevation that people unaccustomed to high altitudes suffered from altitude sickness, whose symptoms include headaches, fatigue, dizziness and upset stomach. The empire was often plagued with a variety of natural disasters, such as earthquakes, volcanoes, droughts and devastating floods.

2. Inca Gold

The Spanish conquistadores, or conquerors, came to what they called the New World in search of gold. Francisco Pizarro, who first came to the Americas in 1502, had heard rumors of a land filled with gold to the south of Mexico. He and a small band of Spanish soldiers landed on the shores of what is now Ecuador in 1531. They had arrived in Tahuantinsuyu, the “Land of the Four Quarters,” known to us as the Inca Empire.

When Pizarro’s men arrived in the Inca capital of Cuzco, they saw a splendid city with palaces, halls, and temples made of huge stones carefully fit together without mortar. Most incredible of all were the temples decorated with gold, silver and precious jewels. The most important temple was the Coricancha, or “House of the Sun,” dedicated to the Inca sun god, named Inti. Its walls and doorways were covered with gold, both inside and out. One building within the complex contained a large statue of the sun, made of solid gold and embedded with precious stones. More fantastic still was the garden. A Spanish eyewitness, Pedro de Cieza de León, describes the sight as follows:

They had also a garden, the clods of which were made of pieces of fine gold; and it was artifically sown with golden maize, the stalks, as well as the leaves and cobs, being of that metal...[T]hey had more than twenty golden sheep [llamas] with their lambs, and the shepherds with their slings and crooks to watch them, all made of the same metal.

Early Spanish observers described the Andean people as well fed, healthy and clean. When they arrived, the Inca emperor and his assistants supervised a highly organized government that controlled an area of 135,000 square miles. The Spanish must have been surprised to learn that the Inca Empire ran very efficiently without three inventions considered essential by Europeans—writing, money, and the wheel.

3. Extreme Environment

The Andes—the second highest mountain chain in the world—create an environment of extreme climate and weather conditions. A mountain range is created when one plate slides under another, creating pressure that lifts and squeezes the land above them, like a tablecloth being pushed up by a heavy plate. The Andes mountain range was created over a period of millions of years, as the plate under the Pacific Ocean, called the Nazca Plate, slid eastward under the South American plate, raising the mountains and creating a deep trench off the coast. The movement of these plates strains the rocks along the plate boundaries, creating a series of faults. Stresses build up over time along both sides of the fault lines, occasionally causing severe earthquakes. For example, in May of 1970, a devastating earthquake, followed by avalanches and mudslides, killed 70,000 people in the central Andes. In the mountainous terrain, earthquakes can cause mudslides and avalanches. The same earthquake loosened a huge block of ice that caused a landslide that buried an entire town, killing 4,000 people. Periodic volcanic eruptions have also claimed the lives of thousands.

The region's climate is influenced by water and air currents that flow north from Antarctica along the Pacific coast. The ocean current, called the Peru or Humboldt Current, brings extremely cold but nutrient-filled water to the surface, supporting a rich supply of fish, birds and sea mammals. But the cold Peru Current causes clouds to release moisture before they reach land, creating one of the driest deserts in the world along the west coast of South America. The winds, cooled by the Peru Current, then warmed by the coastal plains, do not precipitate enough water to produce significant amounts of rain until they rise high into the Andes, where rain falls seasonally in the mountain valleys of the western slope. On the eastern slopes, on the other hand, equatorial winds blowing from the east over the Amazon River hit the mountains, cool, and produce large amounts of rain. The well-watered eastern slopes of the Andes support lush, tropical vegetation as they drop to the Amazonian basin.

At irregular intervals, a warm ocean current runs south along the Peruvian coast, pushing the Peruvian Current farther west. This recurring current, called El Niño, causes heavy rain in the desert coastal areas and drought in the southern Andes. In 1982, the worst El Niño in 100 years produced heavy flooding in coastal cities, destroying roads and irrigation systems, while drought in the mountains killed thousands of animals.

4. The Vertical Economy

The Andes Mountains stretch from Colombia to Chile, creating three distinct geographic areas—the *costa* (coast), the *sierra* (mountains), and the *selva* (tropical rainforest). The costa is a narrow strip of land bordered by the Pacific Ocean to the west. One of the driest deserts in the world, it is crossed by many rivers that run down from the mountains and can be harnessed for irrigation.
The western slope of the *sierra* is extremely dry. Between the two mountain slopes lies the *altiplano*, a dry, high-altitude plain in southern Peru and northern Bolivia. Areas at altitudes above 10,000 feet are called the *highlands*. They are above the treeline and consist of rolling grassland. Villages extend up to about 1750 feet. The eastern slopes of the Andes, called the *ceja de selva* ("eyebrow of the rainforest"), enjoy warmer, humid weather that supports thick, low vegetation. Machu Picchu is located in this region of the Andes, at an altitude of about 8,000 feet. Its climate is drier and warmer in the winter months than the climate of Cuzco, which is located in the highlands at an elevation of 10,300 feet. To the east lies the *selva*, the beginning of the Amazonian rainforest.

Although the rugged Andes Mountains create extreme weather conditions and make transportation difficult, they have hidden advantages that Andean people learned to exploit. The difference in altitude between the peaks and valley bottoms can be thousands of feet, creating wide variations in temperature and rainfall at different altitudes. The varying *topography* of the mountains creates a variety of *ecological niches*, which are zones stacked one on top of another where different types of animals and plants can survive. So, instead of having to travel hundreds of miles to arrive in a different climate, Andean people can walk as little as 60 miles to go from a tropical forest in the lowlands to the frozen *tundra* of the highlands. An Andean family group might make its base in the temperate *quechua zone* located in the highlands, where family members would grow maize, beans, garden vegetables, *quinoa* (a high-protein grain), potatoes and Asian grains such as wheat and barley. Some family members descend to the *ceja de selva* on the eastern slopes of the Andes to tend fields of maize, *coca*, fruit, pepper, and other staples. They can descend farther onto the plains of the Amazon forest to cultivate *manioc*, a root crop. They also maintain herds of llama and *alpaca* in the higher pasturelands. Plants with different planting and harvesting times can be grown at different altitudes. Various plots of land farmed by one family group might be two or three days apart by foot.

This system, called a “*vertical economy*,” had many advantages in the harsh Andean climate. First, it gives a community access to a wide variety of foods and other products. Second, it protects them against the impact of harsh and unpredictable weather conditions—if frost or drought destroy the crop at one elevation, the community can fall back on the harvest in another ecological niche. Andean farmers also plant several (sometimes dozens) of varieties of one crop like potatoes in a single field so that at least some plants will survive the season’s unpredictable temperature and rainfall.

Andean people developed a technique for food storage that actually turned their harsh environment into an asset. Living at altitudes of about two miles above sea level, they had as many as 300 nights of frost and heat from strong sunlight during the day. They used this combination of hot and cold to “freeze dry” meat and potatoes that were left outside to alternately freeze and dry over a long period of time. The Incas called the dried meat *charqui*. It lent its name to the dried meat we call beef jerky. Andean people also made *chuño* by softening potatoes in water and leaving them outside to freeze at night. During the day they dried in the hot sun. The freeze-dried foods could be stored in warehouses for several years and used during periods of drought or other natural disasters. The ability to store food was crucial, since frequent frosts, hail and drought often led to crop failures in two or three years out of four.

5. Administering a Vast Empire

An empire is a government that controls a huge territory and millions of people. It usually encompasses many different ethnic groups. Empires usually gain control over other areas by military force, but control can also be economic or political. The leaders of empires need to develop certain mechanisms to exert control over their vast territory, such as a road system, a common lan-
guage, an administrative system and an army.

One reason the Inca Empire ran smoothly is that the Inca rulers took traditions that already existed in the Andes region and altered them to serve in the administration of the Inca state. For example, a road system had already been built by previous civilizations in various parts of the Inca Empire. The Inca emperors expanded it so that it connected the entire empire. Inca emperors also used the traditional *mita system* of sharing labor as the basis for obtaining labor services from all households. (See Section 8, The Mita System.)

6. Connecting an Empire

The Inca rulers needed a system of communicating with all parts of the empire. So they expanded the existing roads into an elaborate road system that ran throughout the empire. The road system was over 25,000 miles long. One road ran along the coast, and another lay inland along the Andes Mountains. Bridges crossed broad rivers as well as rushing streams that cut through deep mountain valleys. Shorter roads linked the two main roads.

The road system was used almost entirely by people on official business—the Inca emperor and his court examining the realm, caravans of llama herders transporting goods to be housed in storehouses, soldiers marching to put down an uprising in a rebellious province, administrators on official business, and runners delivering messages. Ordinary people could use the roads only if granted official permission.

Runners, called *chasquis*, lived in small huts that were built every four to six miles along the road. The messengers would run to the next way station, shouting the message to the next *chasqui*. Messages could travel about 150 miles a day in this manner. The messengers probably carried *quipus* to assure that the information did not get distorted by frequent repetition. *Chasquis* also carried goods to the emperor, bringing fish from the coast to Cuzco in just two days.

Inca armies used the roads in time of war to move quickly into battle. Storehouses built along the way held weapons, including lances and darts, dried food, blankets and even sandals for soldiers to use in time of war. If crops failed in one area, food was distributed to area residents from the warehouses. The local community was expected to refill the storage houses when crops were plentiful.

7. Irrigation and Terracing

The land along the Pacific coast and in the highlands is dry and requires irrigation to produce reliable crop yields. People living in the *arid* deserts along the coast had built elaborate irrigation systems to harness the many rivers that flowed from the mountains to the ocean. The Incas expanded this system to make it more productive.

In the highlands, farmers had long built terraces to create more surface area for farming. Terracing involves building large retaining walls on a mountain slope and filling in the space between the wall and the slope above with soil. Terracing prevents soil erosion and rainfall runoff. Channels divert spring water and streams to water the tiny fields. Farmers had been terracing the slopes of the Andes for centuries, and the Incas greatly expanded the amount of agricultural land by building terraces in conquered lands throughout the Andes. At the height of the Inca empire, about 2.47 million acres of irrigated terraces were in cultivation. Andean farmers still use some of these terraces today, but many have fallen into ruin.

Building terraces, irrigation systems and roads requires a high level of organization and the labor
of many workers. Where did Inca administrators find workers to carry out these major engineering projects?

8. The *Mita* System

As we have seen, the Incas did not have money, and so the government could not collect taxes as we know them. Instead, Inca administrators required adult men to work for the state for a certain number of days per year. This system is called the *mita* system. As soon as a man married, he became the head of a household and was obligated to perform *mita* work. Each person was assigned a specific job according to his skills. For example, a skilled weaver would be assigned to make cloth, and a fast runner would be assigned to be a *chasqui* runner. The foot soldiers in the Inca army were farmers who were serving their *mita* labor obligation. Pachacuti rebuilt Cuzco by calling 30,000 men to contribute *mita* labor. Other activities carried out with *mita* labor included farming, mining, road and bridge building, building temples and other public monuments, transportation of goods, building canals, terraces and irrigation systems, and making pottery and metalwork. Some ethnic groups were considered to be especially skilled at certain tasks and these were therefore assigned to them. For example, one group was thought to be especially good at carrying litters (a sort of platform on railings used to carry the Inca emperor and other important people). Others were gifted stonemasons, dancers or warriors. Some groups were considered “good for nothing,” but they were assigned *mita* work anyway. One group was required to gather reeds, and another to turn in a basket of live lice every four months!

Although every man was expected to contribute work each year for the empire, only a few men in a village would be called to work at one time so that other family members could take over his work at home. Both women and men were required to weave a certain amount of cloth for the state each year. The length of time a person was expected to do *mita* work varied according to the task assigned, but usually lasted no more than two to three months per year. The person assigned a specific task could get family members to help him in order to make the length of *mita* service shorter, so it was beneficial to have a large family. Although *mita* work was required, and probably resented by non-Inca ethnic groups who became incorporated into the empire, it was really an extension of the Andean custom of each individual working for the group. Now each head of household was performing labor for a certain period of time for the Inca state.

Workers and their families received something in return for the labor they contributed to the state. Both *curacas* and the Inca emperor hosted festivals periodically, in which they gave food and drink to everyone in the community. These festivals were rewards after workers had completed plowing, planting, harvest and canal cleaning chores. The emperor also gave textiles and metal objects as an expression of generosity and to symbolize his gratitude for *mita* labor. For example, soldiers received blankets.

The Inca Empire also employed full-time skilled craftsmen to produce luxury textiles, elegant pottery and exquisite objects of gold and silver. The emperor gave these luxury goods to leaders of conquered people, to members of the Inca nobility and to Inca religious leaders. They were also placed in the graves of important people.

9. *Quipu*

The Inca used an ingenious tool that had been developed by an earlier civilization in the region for keeping track of all kinds of information. The object, called a *quipu*, is simply a long string held horizontally with shorter strings of many colors tied to it. Each of these strings can have other strings...
tied to it. The strings have different types of knots to represent the numbers 0 to 9. Where a knot is located on a string determines the place value of the knot. For example, knots closest to the main string might represent thousands, those three inches from the main string might represent hundreds, those six inches from the main string might stand for tens, and those nine inches from the main string might represent ones. Different colored strings represented different things—for example, a yellow string might represent gold, and a white string, silver.

Quipus could not be used to add, subtract or multiply. Specially trained administrators called quipucamayocs learned to "read" the quipus. They also used stones and counting trays similar to the abacus for doing calculations, and then transferred the information back to the quipu.

10. Inca Religion

Perhaps because they lived in a harsh and unpredictable environment, the Inca practiced religious rituals designed to win the favor of the gods, who were often associated with natural forces such as the sun, water, or weather. The Inca people gave precious things to the gods to earn their favor.

The Inca religion grew out of the beliefs of Andean people regarding natural forces. Andean people have long worshipped the natural world around them, including mountains, rivers, lakes, the ocean, and constellations. They identify natural features such as especially high mountains, springs and large stones as sacred places, called huacas. The Incas worshipped the sun as the ultimate giver of life and celebrate festivals to assure that the sun will continue to appear each day. They used felines and snakes as symbols in their religious art.

Pachacuti, who ruled from A.D. 1438 to 1471, greatly expanded the Inca Empire and rebuilt Cuzco. He also reorganized the Inca religion. He created a special relationship between himself and the sun, proclaiming that the Inca emperor was the sun’s son. Pachacuti built the elaborate temple to the Sun in Cuzco that awed the Spanish. Wiracocha was the god of creation who was believed to have created all things, including the sun, moon and stars, as well as the earth and human beings. The Inca people believed that Illapa, the thunder or weather god, controlled rain. He was asked to provide enough rainfall at critical points during the agricultural cycle. Mama-Quilla, the moon god, was the wife of the sun. The festival of the moon was held near the spring equinox, at the beginning of the planting season. Pachamama, the god of the earth, and Mama-Cocha, the god of the sea, were also female gods. Many other local deities existed to protect herds of llamas, wild animals and crops.

A large group of male and female priests worshipped the many gods and maintained their shrines. The highest priest, usually the brother or uncle of the emperor, worshipped the sun. A group of women called aqllakuna made textiles and chicha for the temples. The priests and attendants of Inca gods were supported by the agricultural goods produced by the third of the land under Inca control.

Inca beliefs required people to observe many rituals tied to the agricultural calendar. These rituals involved the sacrifice of precious objects, including textiles, coca, chicha, and llamas. Children were sacrificed only on rare occasions after natural disasters, war or during the crowning of a new emperor.

Major festivals took place in December at the beginning of the rainy season, and included dancing, drinking and sacrifice. Another important festival occurred in May to celebrate the corn harvest. Many llamas were sacrificed, and the meat was either eaten or burned. In June, a festival to the sun god Inti took place near Cuzco. Only royal Inca men could participate. The festival included llama sacrifices, dancing, and drinking chicha.
11. Learning About the Incas

Because the Incas had no written language, scholars studying them have had to rely on other sources of information. These include:

1. Reports made by Spanish observers who conquered the Incas (referred to as the Spanish Chronicles);
2. Archaeological remains left by the Inca people, such as buildings, pottery, textiles, tools, metal objects and burial sites; and

Each source of information has biases or other limitations. Biases arise from the observer’s opinions or points of view. The Spanish officials, soldiers and priests were biased in their reporting of Inca life, because they wanted to justify their conquest of the Inca. Most portrayed Andean religion unfavorably and some exaggerated the scope of human sacrifice.

Archaeologists have studied the physical remains of the Inca culture extensively. They have reconstructed the elaborate road system, examined gravesites to learn about burial customs and religious beliefs, and studied Inca crafts such as pottery, metal objects and textiles. They have studied skeletal remains to determine the health and longevity of various ethnic groups living in the Inca Empire. They have also excavated Inca cities to learn about how people lived. This source of information, while valuable, is incomplete.

12. Modern-day Andean People

Today, millions of people still live in the Andean highlands. They use some of the crops and subsistence practices developed in Inca times. Using terraces built by the Inca, they grow corn, herd llamas and alpacas, and weave beautiful textiles. Some continue Inca traditions such as drinking chicha and eating cuyes (guinea pigs) during religious festivals. Seven million also continue to speak Quechua, the language of the Inca state.

Social scientists called anthropologists study these people to learn about cultural traditions that may go back to Inca times. But many traditions have been modified by contact with Spanish culture as well as modern influences. For example, an Indian group called the Qero still produces beautiful textiles. They hold a religious ceremony at Easter that involves blessing the finest textiles produced during the year. The festival begins with people parading two crosses under an arch hung with textiles and continues with a ceremony where participants drink chicha beer made from corn. In another festival, known as Qoylluri Riti, Quechua-speaking farmers make a pilgrimage to a snow-capped peak. The shrine near the summit, however, is dedicated to the Virgin Mary, thus combining Catholicism with earlier traditions of mountain worship. These festivals illustrate how Inca customs and Spanish traditions are often blended into a new ritual. Anthropologists have to determine how these practices and their meanings have changed over time.

Today, the people who live in the Andes Mountains have a culture that is a mixture of Inca, colonial Spanish and more modern influences. Isolated by imposing mountains, some villages have preserved their culture more than many other native groups in the Americas.

But many highland traditions are disappearing. Many highland people have moved to the coastal cities in search of an easier way of life and greater opportunities for their children. They are replacing their diet of potatoes and quinoa, a high-protein grain, with imported pasta and rice, which, while cheaper to prepare, is less nutritious. They drink bottled beer rather than locally made chicha. Others remain in the mountains but adopt modern practices such as wearing machine-made clothing rather than weaving their own textiles.
13. Conclusion

The Inca Empire was one of the most highly developed civilizations of its time. Unlike the Roman Empire, it was at its peak when it was conquered by outsiders. The invaders had superior weapons and the horse, which gave them an advantage on the battlefield. European diseases introduced by the Spanish far to the north decimated the Inca people even before the invaders arrived on their shores.

The Inca culture is of interest to scholars because its leaders developed a highly organized state that ruled over millions of people living in a vast territory without the aid of money, writing or the wheel. By building on indigenous institutions, such as the ayllu, mita labor, the quipu and the vertical economy, Inca rulers controlled a vast empire, created great art, developed sophisticated engineering and scientific principles and managed to provide basic shelter and food for millions of people in an environment of harsh extremes.

Sources

VIII. Glossary

Note: Words are in bold the first time they appear in the text of the background article “The Incas” (Section VII). Foreign words are italicized.

abacus: A method for adding and subtracting using rows of beads.

alpaca: A South American animal related to the camel and llama. Its wool is very soft and is used to make fine textiles.

altiplano: A high, dry plateau between the two major Andean ranges located in Bolivia and northwestern Argentina.

Andes Mountains: Mountain chain running along the western coast of South America.

anthropologist: A social scientist who studies modern people who live as people did in prehistoric cultures.

aqllakuna: The “Chosen Women” who wove cloth and made chicha that was consumed in religious rituals.

archaeologist: A scientist who studies life in prehistoric times, usually by examining physical remains such as buildings, pottery, tools and other objects.

arid: Very dry.

bias: Opinions or values held by a person that influence the way he or she interprets other cultures.

ceja de selva: “Eyebrow of the rainforest,” the area with lush vegetation just above the rainforest on the eastern side of the Andes Mountains.

charqui: An Andean freeze-dried meat that can be stored for long periods and easily transported.

chasqui: A messenger who relayed official messages.

chicha: A beer made of corn, chicha is often used by Andean people in festivals and religious ceremonies.

chuño: Freeze-dried potatoes that can be stored for long periods.

clods: Lumps of dirt.

coca: A plant native to South America containing a chemical that is a narcotic. Andean people chew the leaves to dull hunger pangs, provide energy and to receive nutrients. Coca is grown and processed to make cocaine, a powerful illegal drug.

conquistadores: Spanish soldiers who conquered the Inca Empire and other Native American groups in North and South America.

Coricancha: The temple to Inti, the Sun God, built by Pachacuti in Cuzco.

costa: Coast.

Cuzco: A city in present-day Peru, Cuzco was the capital of the Inca Empire.
deity: A god.

ecological niches: Small areas that support a specific mix of plant and animal life. Mountainous regions have many ecological niches since variations in altitude create different temperature and rainfall conditions.

El Niño: A warm ocean current that runs south along the Peruvian coast, pushing the Peru Current out to sea. El Niño causes extreme weather-related disturbances in South America, including drought, torrential rains, mudslides and avalanches.

Empire: A government that controls a huge territory and millions of people, often encompassing many different ethnic groups. Control may be military, political or economic.

highlands: Land above about 10,000 feet in altitude.

huaca: A site considered sacred to the Incas, such as a mountain, lake, river or rock.

Inca Empire: Empire that governed between 10 and 12 million subjects in the Andes region of South America between about A.D. 1438 and 1532. The Inca Empire lasted less than 100 years.

indigenous: Originating in the region or country where found; native.

Inti: The Inca Sun God. He was the second most important god after Wiracocha.

irrigation: A system of canals and ditches that carry water to fields so that crops can grow.

llama: An animal native to South America, related to the camel. The llama is used in the Andes region to carry heavy loads. Its wool is used to weave cloth, its hide is used to make leather, and its meat is eaten.

maize: Corn. Maize was a very important part of the Inca diet and was also used to make chicha, or corn beer.

manioc: A tropical plant with starchy roots used in making tapioca. A type of manioc called sweet cassava can be eaten like potatoes.

mita system: The requirement that all male family heads work for a certain number of days for the Inca Empire. Duties included farming, serving in the army, textile weaving, building towns, terraces, irrigation systems and roads, working in mines, and carrying messages.

montaña: High, humid, forested environmental zone on the eastern slope of the Andes.

mortar: A building material made of sand, water and lime, similar to cement, for holding stones together.

mummy: A dead body preserved from decay, usually by wrapping in cloth.

Pedro de Cieza de León: A Spanish soldier who wrote about the Inca Empire about 20 years after the Spanish Conquest.

Peru Current (Humboldt Current): A frigid ocean current that flows north along the west coast of South America, carrying cold, nutrient-filled water that supports a rich supply of fish, birds and sea mammals.

plates: Huge sections of the earth’s crust that grind over and under each other, occasionally causing earthquakes.

Qero: A Quechua-speaking ethnic group living in the high mountains about 100 miles from Cuzco who still practice agricultural and herding techniques used during the Inca Empire. They weave beautiful textiles from alpaca wool. Their economic activities encompass three ecological zones, alpaca pastures, potato fields and maize fields.
Qoylluri Riti: A festival still observed by Quechua-speaking people who climb to mountain-top shrines to make offerings to ancient gods that are believed to inhabit the landscape. The shrine near the summit of the mountain is dedicated to the Virgin Mary.

Quechua Zone: The highly productive temperate zone on the western slopes and inter-mountain valleys of the Andes.

Quinoa: A high-protein grain grown in the highlands of the Andes.

Quipu: A device for recording numbers and probably events, developed in South America and used extensively by the Inca emperor to gather information on the Inca empire. The quipu is a long horizontal string with shorter strings extending vertically along it. Knots on the strings stand for different numbers and units. Different colors probably stood for different things that were being counted.

Quipucamayoc: A person trained to read a quipu.

Selva: Rainforest.

Sierra: Mountains.

Tahuantinsuyu: The Quechua word for the Inca Empire.

Topography: Surface features of a place or region, including mountains, hills and valleys.

Tundra: Land in a very cold or high altitude region that remains frozen year-round.

Vertical Economy: In mountainous regions, different animals and crops can be raised at different altitudes. People can produce a variety of foods and other products within a relatively short distance by taking advantages of different ecological niches.

Wiracocha: The Inca god of creation.
IX. Recommended Books

The following books have been reviewed and recommended by the Youth Review Board of the Stratford, Connecticut, Library Association.

Middle School

Peru (Enchantment of the World Series), by Emilie U. Lepthien. Children’s Press, 1992 (Grades 6–8).*

Metropolis: Inca Town, by Fiona MacDonald and Mark Bergin. Franklin Watts, 1998 (Grades 6–7).

Machu Picchu, by Elizabeth Mann. Makaya Press, 2000 (Grades 6–8).

The Incas, by Shirlee P. Newman. Franklin Watts, 1992 (Grades 6–8).

The Incas, by Barbara L. Peck. Franklin Watts, 1983 (Grades 6–8).

Middle School/High School

Lost Civilizations, Incas: Lords of Gold and Glory, by the Editors of Time-Life Books, 1992 (Grades 7–10).*

High School

Lost City of the Incas, by Hiram Bingham. Duell, Sloan and Pearce, 1948 (Grades 9–12).

Currently out of print; however, check with your local library for availability.
Compiled by
Lucretia I. Duwel, Head of Teen Services
Diane Stackpole, Teen Services Librarian

Thanks to
Karen Bowles, Director
Barbara Blosveren, Associate Director, Teen Services and Human Resources

Stratford Library Association
2203 Main Street
Stratford, CT 06615
(203) 385-4167
www.stratford.lib.ct.us
X. Connections to National Science Education Standards

The three science units contained in this curriculum support the following strands contained in the National Science Education Standards.

Content Standards, Grades 5–8

Science as Inquiry

As a result of activities in grades 5 to 8, all students should develop:

Abilities necessary to do scientific inquiry

– use appropriate tools and techniques to gather, analyze and interpret data;
– develop descriptions, explanations, predictions, and models using evidence;
– think critically and logically to make the relationships between evidence and explanations;
– recognize and analyze alternative explanations and predictions;
– use mathematics in all aspects of scientific inquiry.

Understandings about Scientific Inquiry

Different kinds of questions suggest different kinds of scientific investigations.
Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

1. Unit on Adjusting to an Extreme Environment

Life Science

As a result of activities in grades 5 to 8, all students should develop an understanding of:

Structure and function in living systems

The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Reproduction and heredity

The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.
Regulation and behavior

All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing environment.

An organism’s behavior evolves through adaptation to its environment.

Populations and ecosystems

The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Science in Personal and Social Perspectives

As a result of activities in grades 5 to 8, all students should develop an understanding of:

Personal health

Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

2. Archaeoastronomy Unit

Structure of the Earth System

As a result of activities in grades 5 to 8, all students should develop an understanding of:

Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.

The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.

Earth and Space Science

As a result of activities in grades 5 to 8, all students should develop:

An understanding of the earth in the solar system

Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.

Seasons result from variations in the amount of the sun’s energy hitting the surface, due to the tilt of the earth’s rotation on its axis and the length of the day.
3. Unit on Inca Builders

Science and technology

As a result of activities in grades 5 to 8, all students should develop:

Abilities of technological design, [including]
- identify appropriate problems for technological design;
- design a solution or product;
- implement a proposed design;
- evaluate completed technological designs or products;
- communicate the process of technological design.

Understanding about science and technology

Many different people in different cultures have made and continue to make contributions to science and technology.

Science and technology in society

Science and technology have advanced through contributions of many different people, in different cultures, at different times in history. Science and technology have contributed enormously to economic growth and productivity among societies and groups within societies.

Scientists and engineers work in many different settings.

Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions.

Science in Personal and Social Perspectives

Natural hazards

Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

History and Nature of Science

As a result of activities in grades 5 to 8, all students should develop an understanding of:

Science as a human endeavor

Women and men of various social and ethnic backgrounds— and with diverse interests, talents, qualities, and motivations— engage in the activities of science, engineering, and related fields.
Science requires different abilities, depending on such factors as the field of study and type of inquiry.

Nature of science

Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models.

History of science

Many individuals have contributed to the traditions of science. Studying some of these individuals provides further understanding of scientific inquiry, science as a human endeavor, the nature of science, and the relationships between science and society.

In historical perspective, science has been practiced by different individuals in different cultures. In looking at the history of many peoples, one finds that scientists and engineers of high achievement are considered to be among the most valued contributors to their culture.