Pyrite "sun" in shale.
The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time.

Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.
Visitors start their journey through geologic history at the beginning of time. Rare specimens from the collection as well as the latest scientific research are brought together to enable visitors to peer back billions of years and envision the origins of the sun, the planets, and other celestial neighbors including meteorites and comets. A rich array of specimens are displayed. Featured are the Weston, Connecticut meteorite, the first described fall in the United States (1807), and a sample of a meteorite from Mars. Giant meteorite specimens are mounted in the open for visitors to touch and inspect. Moving forward through geologic time, visitors learn that collisions between the earth and meteorites or comets have caused global devastation and mass extinctions, such as the collision 65 million years ago which wiped out much of the earth’s fauna including many familiar dinosaurs. Such collisions pose a threat to us even today and studying past collisions allows us to understand their environmental consequences. Finally, visitors are immersed in the search for ancient life on Mars and are left pondering the question: Are we alone in the universe?

The Weston meteorite, which fell in Connecticut in 1807.

The world of minerals

Uncut diamond crystal shown in a natural “kimberlite” rock matrix. Diamonds generally form at depths of 100 miles or more and are carried to the earth’s surface by extremely violent volcanic activity. Most diamonds are incredibly old, having formed between about 1.5 and 3 billion years ago.

Natural fibers of asbestos from the Pyrenees, France.

Gold with crystal mold, California.

This group of giant stibnite crystals, nearly 20 inches in height, is from Shikoku Island, Japan. These crystals are among the largest of their kind in the world.
THE WORLD OF MINERALS

Minerals are not only great wonders of nature— they also impact society and the way we live in far-reaching ways. Each year we depend on hundreds of millions of tons of metals and other earth materials extracted from our planet. Visitors view a wide range of ore minerals, explore the ways in which ores have formed through geologic time, and are introduced to the challenges of environmentally responsible metals production and use. The impact of minerals on public health issues is highlighted with displays on biologically sensitive materials such as asbestos. Gems and precious metals have been culturally important for thousands of years, and will doubtless be so for thousands more. Visitors explore the beauty of these most compelling of all mineral varieties by learning how they form, and the ways they are fashioned into useful or decorative objects. The exhibition concludes by weaving the threads of history together and tracing how ancient precious minerals from the time of Moses relate to the famous Lux et Veritas seal of Yale University itself.

GEOLOGY AND EARTH FORCES

What causes earthquakes and volcanic eruptions, and can they be predicted or prevented? Why are these devastating natural hazards common in some parts of the globe, and absent from others? How do we know that the face of our planet has been changing for over 4.5 billion years, and will continue to change for billions more? Visitors learn the answers to these questions as they interact with exhibits on the forces that drive our dynamic planet. A giant interactive plasma screen display highlights the great geologic features of the earth, including the deepest ocean trenches, the most active volcanoes, the regions of greatest earthquake hazard, and the highest mountains. This display is accompanied by a 4-foot diameter scale model of the planet depicting the tectonic plates, ocean basins, and mountain belts. A video animation allows visitors to view the configurations of the shifting continents from today back to ancient times when the first complex life forms were evolving some 600 million years ago.

Natural crystal of ruby, Yen Bai, Luc Yen, Vietnam.

Topography of the world's continents and ocean basins.
Many rock samples, including lava bombs from explosive volcanoes and pulverized rock from earthquake faults, are mounted for visitors to freely inspect. Visitors learn how scientists use the rock record, fossil record, and the natural radioactivity preserved in rocks and minerals to reveal the ages of the great mountain building episodes that have occurred repeatedly throughout earth’s history.

GEOLOGY AND EARTH FORCES

Explosively erupted volcanic lava “bomb” from Bend, Oregon.

Glacial Valley, Yosemite National Park, California.

THE WORLD OF MINERALS

At the finale of the HoMES experience, visitors view the wonders of the mineral kingdom. The study of minerals has a long and distinguished history at Yale, beginning with Silliman and carried on by luminaries such as James Dwight Dana, a Yale professor generally acknowledged as the founder of modern mineralogy. Visitors view brightly lit cases filled with a dazzling array of specimens from the Peabody’s priceless collection, including specimens from the famous Brush Collection of the Sheffield Scientific School. Here they learn how minerals form and grow, why crystals have such alluring shapes and colors, and how to use practical skills of mineral identification on their own hikes and outdoor trips. The displays highlight intriguing mineral properties, including fluorescence, magnetism and radioactivity. Exciting new developments in mineralogy are showcased in temporary displays that change regularly to keep the exhibition fresh and timely. The enormous Peabody collection can’t be displayed all at once, so an interactive video panel allows visitors to retrieve images and descriptions of specimens.

Artist’s rendering of the World of Minerals section of HoMES.

Professor James Dwight Dana, a pioneer in geology and mineralogy.

Extremely rare crystals of chalcocite copper ore, from Bristol, Connecticut.
CONNECTICUT, A NATURAL GEOLOGIC LABORATORY

The important rocks quarried in Connecticut are spotlighted, including the Stony Creek granite (used in the base of the Statue of Liberty, and many other buildings), traprock, and brownstone.

In the mid to late 20th Century, Yale’s Professor John Rodgers greatly expanded our understanding of the geologic history of Connecticut.

Stony Creek granite, likely part of a giant mass of continental crust that was ripped from ancient northwestern South America over 600 million years ago.

East Rock in New Haven formed as molten magma intruded into fractures in the Earth’s crust when Africa was splitting away from North America some 200 million years ago. This type of rock, often called “traprock,” is a vital part of the crushed stone and gravel industry in Connecticut.

ATMOSPHERES, OCEANS AND CLIMATES

The latest scientific research shows that the rocks of the continents and ocean basins interact with the atmosphere and oceans to influence climate. These interactions are crucial for making the earth habitable for life. Earth’s atmosphere and climate have continued to change over the last several billion years as the continents slowly moved tens of thousands of miles across the face of the planet. We all take the oxygen in our air for granted, but over 2.5 billion years ago there were only tiny traces of oxygen in the atmosphere. Many of the great iron deposits of the world date back to these early times, and visitors can touch a massive specimen of this brightly colored red and silver ore. On the other hand, several hundred million years ago, in the Carboniferous Period, oxygen levels were higher than today’s.

Banded iron formation (iron ore) from the Upper Peninsula of Michigan.

The important rocks quarried in Connecticut are spotlighted, including the Stony Creek granite (used in the base of the Statue of Liberty, and many other buildings), traprock, and brownstone.
ATMOSPHERES, OCEANS AND CLIMATES

The oxygen-laden atmosphere of the Carboniferous allowed insects to grow to immense size, as represented in the exhibition by a scale model of a prehistoric dragonfly with a 3-foot wingspan. Earth has undergone repeated ice ages in the last several hundred thousand years. Much of the northern and southern hemispheres were covered with sheets of ice thousands of feet thick. Visitors learn that farther back in time the entire planet was frozen over more than once, producing “snowball earth” environments totally unlike the one that we enjoy today. Finally, visitors are introduced to the problems of present-day global change. Are human activities driving current environmental changes, or are natural causes responsible?

CONNECTICUT, A NATURAL GEOLOGICAL LABORATORY

Thousands of Peabody visitors are naturally curious about the geologic events that shaped the picturesque mountains and valleys of southern New England. The geologic history of the area goes back over a billion years to a time when algae and bacteria dominated the planet. The modern study of geology and meteorites in the United States began here with Professor Benjamin Silliman at Yale in the early 19th century. Illustrated panels introduce visitors to the seminal contributions of Silliman and those that followed him. Next, visitors learn that the geologic jigsaw puzzle that is Connecticut was slowly assembled from great masses of continental crust, some ripped from what are today South America and Africa. Large, full-color maps of the state depict the roots of ancient volcanoes and earthquake faults. These geologic features date back to when the mountains of Connecticut were as lofty as the high Himalaya, and bear silent witness to the violent geologic beginnings of New England. An interactive, 6-minute video presentation keyed to Connecticut rock samples provides visitors with an overview of this geologic history, highlighting the unique rock types and geologic features found in cities and towns across the state.
The oxygen-laden atmosphere of the Carboniferous allowed insects to grow to immense size, as represented in the exhibition by a scale model of a prehistoric dragonfly with a 3-foot wingspan. Earth has undergone repeated ice ages in the last several hundred thousand years. Much of the northern and southern hemispheres were covered with sheets of ice thousands of feet thick. Visitors learn that farther back in time the entire planet was frozen over more than once, producing “snowball earth” environments totally unlike the one that we enjoy today. Finally, visitors are introduced to the problems of present-day global change. Are human activities driving current environmental changes, or are natural causes responsible?

Thousands of Peabody visitors are naturally curious about the geologic events that shaped the picturesque mountains and valleys of southern New England. The geologic history of the area goes back over a billion years to a time when algae and bacteria dominated the planet. The modern study of geology and meteorites in the United States began here with Professor Benjamin Silliman at Yale in the early 19th century. Illustrated panels introduce visitors to the seminal contributions of Silliman and those that followed him. Next, visitors learn that the geologic jigsaw puzzle that is Connecticut was slowly assembled from great masses of continental crust, some ripped from what are today South America and Africa. Large, full-color maps of the state depict the roots of ancient volcanoes and earthquake faults. These geologic features date back to when the mountains of Connecticut were as lofty as the high Himalaya, and bear silent witness to the violent geologic beginnings of New England. An interactive, 6-minute video presentation keyed to Connecticut rock samples provides visitors with an overview of this geologic history, highlighting the unique rock types and geologic features found in cities and towns across the state.
CONNECTICUT, A NATURAL GEOLOGIC LABORATORY

The important rocks quarried in Connecticut are spotlighted, including the Stony Creek granite (used in the base of the Statue of Liberty, and many other buildings), traprock, and brownstone.

In the mid to late 20th Century, Yale’s Professor John Rodgers greatly expanded our understanding of the geologic history of Connecticut.

Stony Creek granite, likely part of a giant mass of continental crust that was ripped from ancient northwestern South America over 600 million years ago.

East Rock in New Haven formed as molten magma intruded into fractures in the Earth’s crust when Africa was splitting away from North America some 200 million years ago. This type of rock, often called “traprock,” is a vital part of the crushed stone and gravel industry in Connecticut.

ATMOSPHERES, OCEANS AND CLIMATES

The latest scientific research shows that the rocks of the continents and ocean basins interact with the atmosphere and oceans to influence climate. These interactions are crucial for making the earth habitable for life. Earth’s atmosphere and climate have continued to change over the last several billion years as the continents slowly moved tens of thousands of miles across the face of the planet. We all take the oxygen in our air for granted, but over 2.5 billion years ago there were only tiny traces of oxygen in the atmosphere. Many of the great iron deposits of the world date back to these early times, and visitors can touch a massive specimen of this brightly colored red and silver ore. On the other hand, several hundred million years ago, in the Carboniferous Period, oxygen levels were higher than today’s.

Banded iron formation (iron ore) from the Upper Peninsula of Michigan.

The important rocks quarried in Connecticut are spotlighted, including the Stony Creek granite (used in the base of the Statue of Liberty, and many other buildings), traprock, and brownstone.

In the mid to late 20th Century, Yale’s Professor John Rodgers greatly expanded our understanding of the geologic history of Connecticut.

Stony Creek granite, likely part of a giant mass of continental crust that was ripped from ancient northwestern South America over 600 million years ago.

East Rock in New Haven formed as molten magma intruded into fractures in the Earth’s crust when Africa was splitting away from North America some 200 million years ago. This type of rock, often called “traprock,” is a vital part of the crushed stone and gravel industry in Connecticut.

The latest scientific research shows that the rocks of the continents and ocean basins interact with the atmosphere and oceans to influence climate. These interactions are crucial for making the earth habitable for life. Earth’s atmosphere and climate have continued to change over the last several billion years as the continents slowly moved tens of thousands of miles across the face of the planet. We all take the oxygen in our air for granted, but over 2.5 billion years ago there were only tiny traces of oxygen in the atmosphere. Many of the great iron deposits of the world date back to these early times, and visitors can touch a massive specimen of this brightly colored red and silver ore. On the other hand, several hundred million years ago, in the Carboniferous Period, oxygen levels were higher than today’s.
GEOLOGY AND EARTH FORCES

Many rock samples, including lava bombs from explosive volcanoes and pulverized rock from earthquake faults, are mounted for visitors to freely inspect. Visitors learn how scientists use the rock record, fossil record, and the natural radioactivity preserved in rocks and minerals to reveal the ages of the great mountain building episodes that have occurred repeatedly throughout earth’s history.

THE WORLD OF MINERALS

At the finale of the HoMES experience, visitors view the wonders of the mineral kingdom. The study of minerals has a long and distinguished history at Yale, beginning with Silliman and carried on by luminaries such as James Dwight Dana, a Yale professor generally acknowledged as the founder of modern mineralogy. Visitors view brightly lit cases filled with a dazzling array of specimens from the Peabody’s priceless collection, including specimens from the famous Brush Collection of the Sheffield Scientific School. Here they learn how minerals form and grow, why crystals have such alluring shapes and colors, and how to use practical skills of mineral identification on their own hikes and outdoor trips. The displays highlight intriguing mineral properties, including fluorescence, magnetism and radioactivity. Exciting new developments in mineralogy are showcased in temporary displays that change regularly to keep the exhibition fresh and timely. The enormous Peabody collection can’t be displayed all at once, so an interactive video panel allows visitors to retrieve images and descriptions of specimens.

Artwork: L. Friedman
Photos: USGS J. Ague
J. Ague
S. Pallatto
W. Sacco
THE WORLD OF MINERALS

Minerals are not only great wonders of nature—they also impact society and the way we live in far-reaching ways. Each year we depend on hundreds of millions of tons of metals and other earth materials extracted from our planet. Visitors view a wide range of ore minerals, explore the ways in which ores have formed through geologic time, and are introduced to the challenges of environmentally responsible metals production and use. The impact of minerals on public health issues is highlighted with displays on biologically sensitive materials such as asbestos. Gems and precious metals have been culturally important for thousands of years, and will doubtless be so for thousands more. Visitors explore the beauty of these most compelling of all mineral varieties by learning how they form, and the ways they are fashioned into useful or decorative objects. The exhibition concludes by weaving the threads of history together and tracing how ancient precious minerals from the time of Moses relate to the famous Lux et Veritas seal of Yale University itself.

Natural crystal of ruby, Yen Bai, Lai Chau, Vietnam.

GEOLOGY AND EARTH FORCES

What causes earthquakes and volcanic eruptions, and can they be predicted or prevented? Why are these devastating natural hazards common in some parts of the globe, and absent from others? How do we know that the face of our planet has been changing for over 4.5 billion years, and will continue to change for billions more? Visitors learn the answers to these questions as they interact with exhibits on the forces that drive our dynamic planet. A giant interactive plasma screen display highlights the great geologic features of the earth, including the deepest ocean trenches, the most active volcanoes, the regions of greatest earthquake hazard, and the highest mountains. This display is accompanied by a 4-foot diameter scale model of the planet depicting the tectonic plates, ocean basins, and mountain belts. A video animation allows visitors to view the configurations of the shifting continents from today back to ancient times when the first complex life forms were evolving some 600 million years ago.

Topography of the world’s continents and ocean basins.
EARTH AND THE SOLAR SYSTEM

Visitors start their journey through geologic history at the beginning of time. Rare specimens from the collection as well as the latest scientific research are brought together to enable visitors to peer back billions of years and envision the origins of the sun, the planets, and other celestial neighbors including meteorites and comets. A rich array of specimens are displayed. Featured are the Weston, Connecticut meteorite, the first described fall in the United States (1807), and a sample of a meteorite from Mars. Giant meteorite specimens are mounted in the open for visitors to touch and inspect. Moving forward through geologic time, visitors learn that collisions between the earth and meteorites or comets have caused global devastation and mass extinctions, such as the collision 65 million years ago which wiped out much of the earth's fauna including many familiar dinosaurs. Such collisions pose a threat to us even today and studying past collisions allows us to understand their environmental consequences. Finally, visitors are immersed in the search for ancient life on Mars and are left pondering the question: Are we alone in the universe?

The Weston meteorite, which fell in Connecticut in 1807.

THE WORLD OF MINERALS

Uncut diamond crystal shown in a natural "kimberlite" rock matrix. Diamonds generally form at depths of 100 miles or more and are carried to the earth's surface by extremely violent volcanic activity. Most diamonds are incredibly old, having formed between about 1.5 and 3 billion years ago.

Natural fibers of asbestos from the Pyrenees, France.

Gold with crystal mold, California.

This group of giant stibnite crystals, nearly 20 inches in height, is from Shikoku Island, Japan. These crystals are among the largest of their kind in the world.
The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time.

Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

For more information Contact:
Eliza J. Cleveland
Director of External Relations
Peabody Museum of Natural History
(203) 432-3452, fax (203) 432-5248
email: eliza.cleveland@yale.edu

Jay J. Ague
Curator of Mineralogy, Peabody Museum of Natural History; Professor, Department of Geology and Geophysics
(203) 432-3771 fax (203) 432-3354
email: jay.ague@yale.edu

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

For more information Contact:
Eliza J. Cleveland
Director of External Relations
Peabody Museum of Natural History
(203) 432-3452, fax (203) 432-5248
email: eliza.cleveland@yale.edu

Jay J. Ague
Curator of Mineralogy, Peabody Museum of Natural History; Professor, Department of Geology and Geophysics
(203) 432-3771 fax (203) 432-3354
email: jay.ague@yale.edu

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

For more information Contact:
Eliza J. Cleveland
Director of External Relations
Peabody Museum of Natural History
(203) 432-3452, fax (203) 432-5248
email: eliza.cleveland@yale.edu

Jay J. Ague
Curator of Mineralogy, Peabody Museum of Natural History; Professor, Department of Geology and Geophysics
(203) 432-3771 fax (203) 432-3354
email: jay.ague@yale.edu

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.

For more information Contact:
Eliza J. Cleveland
Director of External Relations
Peabody Museum of Natural History
(203) 432-3452, fax (203) 432-5248
email: eliza.cleveland@yale.edu

Jay J. Ague
Curator of Mineralogy, Peabody Museum of Natural History; Professor, Department of Geology and Geophysics
(203) 432-3771 fax (203) 432-3354
email: jay.ague@yale.edu

The earth we live on is a dynamic, ever-changing planet. Geologic forces operating over billions of years have shaped the earth we know, and our planet will continue to change for billions of years to come. Today, societies depend on the earth's vast mineral and energy resources, as well as on a habitable climate that allows life to flourish. The Hall of Minerals, Earth and Space (HoMES) is designed to foster an appreciation for the wonders of our planet and, at the same time, illustrate how our survival is inextricably linked to global interactions among the solid earth, its oceans, and its atmosphere.

The exhibition draws on the vast collections of the Yale Peabody Museum, as well as on the latest scientific research, to unlock the mysteries of the rock record. HoMES begins with the formation of the solar system and the earth, featuring rarely seen meteorites from the collection. Visitors are then introduced to processes that shape the earth, such as earthquakes and volcanic eruptions, and to global changes in the continents, oceans and atmosphere throughout geologic time. Connecticut's rich geological history, first studied by Professor Benjamin Silliman at Yale in the early 19th century, is highlighted here as a natural laboratory for earth science. The final section of the exhibition focuses on the societal influences of minerals and gems. It showcases the unparalleled mineral specimens from the Peabody's collection, many of which have not been on display for decades.

HoMES would be the only exhibition of its kind in Connecticut or Rhode Island and, as such, would be a significant scientific and educational resource for the Museum's diverse audiences. Associated materials will be produced to accompany the exhibition, including a series of books on earth science for K-6 grade students, and an interactive web site.
Pyrite "sun" in shale.